def testTensorLearningRate(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) opt = sparse_adam_optimizer.SparseAdamOptimizer( constant_op.constant(0.001)) update = opt.apply_gradients( zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval(), rtol=1e-3, atol=1e-3) self.assertAllClose([3.0, 4.0], var1.eval(), rtol=1e-3, atol=1e-3) beta1_power, beta2_power = opt._get_beta_accumulators() # Run 3 steps of Adam for t in range(1, 4): self.assertAllCloseAccordingToType(0.9**t, beta1_power.eval(), rtol=1e-3, atol=1e-3) self.assertAllCloseAccordingToType(0.999**t, beta2_power.eval(), rtol=1e-3, atol=1e-3) update.run() var0_np, m0, v0 = adam_update_numpy( var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adam_update_numpy( var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, var0.eval(), rtol=1e-3, atol=1e-3) self.assertAllCloseAccordingToType(var1_np, var1.eval(), rtol=1e-3, atol=1e-3)
def testSlotsUniqueEager(self): with context.eager_mode(): v1 = resource_variable_ops.ResourceVariable(1.) v2 = resource_variable_ops.ResourceVariable(1.) opt = sparse_adam_optimizer.SparseAdamOptimizer(1.) opt.minimize(lambda: v1 + v2) # There should be two non-slot variables, and two unique slot variables # for v1 and v2 respectively. self.assertEqual(9, len(set(opt.variables())))
def testSparseRepeatedIndices(self, use_resource): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): if use_resource: repeated_index_update_var = resource_variable_ops.ResourceVariable( [[1.0], [2.0]], dtype=dtype) aggregated_update_var = resource_variable_ops.ResourceVariable( [[1.0], [2.0]], dtype=dtype) else: repeated_index_update_var = variables.Variable( [[1.0], [2.0]], dtype=dtype) aggregated_update_var = variables.Variable([[1.0], [2.0]], dtype=dtype) grad_repeated_index = ops.IndexedSlices( constant_op.constant([0.1, 0.1], shape=[2, 1], dtype=dtype), constant_op.constant([1, 1]), constant_op.constant([2, 1])) grad_aggregated = ops.IndexedSlices( constant_op.constant([0.2], shape=[1, 1], dtype=dtype), constant_op.constant([1]), constant_op.constant([2, 1])) repeated_update_opt = sparse_adam_optimizer.SparseAdamOptimizer( ) repeated_update = repeated_update_opt.apply_gradients([ (grad_repeated_index, repeated_index_update_var) ]) aggregated_update_opt = sparse_adam_optimizer.SparseAdamOptimizer( ) aggregated_update = aggregated_update_opt.apply_gradients([ (grad_aggregated, aggregated_update_var) ]) variables.global_variables_initializer().run() self.assertAllClose(aggregated_update_var.eval(), repeated_index_update_var.eval(), rtol=1e-3, atol=1e-3) for _ in range(3): repeated_update.run() aggregated_update.run() self.assertAllClose(aggregated_update_var.eval(), repeated_index_update_var.eval(), rtol=1e-3, atol=1e-3)
def testSparseDevicePlacement(self, use_resource): for index_dtype in [dtypes.int32, dtypes.int64]: with self.cached_session(force_gpu=test.is_gpu_available()): # If a GPU is available, tests that all optimizer ops can be placed on # it (i.e. they have GPU kernels). if use_resource: var = resource_variable_ops.ResourceVariable([[1.0], [2.0]]) else: var = variables.Variable([[1.0], [2.0]]) indices = constant_op.constant([0, 1], dtype=index_dtype) gathered_sum = math_ops.reduce_sum( array_ops.gather(var, indices)) optimizer = sparse_adam_optimizer.SparseAdamOptimizer(3.0) minimize_op = optimizer.minimize(gathered_sum) variables.global_variables_initializer().run() minimize_op.run()
def testTwoSessions(self): optimizer = sparse_adam_optimizer.SparseAdamOptimizer() with context.eager_mode(): var0 = variables.Variable(np.array([1.0, 2.0]), name="v0") grads0 = constant_op.constant(np.array([0.1, 0.1])) optimizer.apply_gradients([(grads0, var0)]) g = ops.Graph() with g.as_default(): with self.session(graph=g): var0 = variables.Variable(np.array([1.0, 2.0]), name="v0") grads0 = constant_op.constant(np.array([0.1, 0.1])) optimizer.apply_gradients([(grads0, var0)]) gg = ops.Graph() with gg.as_default(): with self.session(graph=gg): var0 = variables.Variable(np.array([1.0, 2.0]), name="v0") grads0 = constant_op.constant(np.array([0.1, 0.1])) # If the optimizer saves any state not keyed by graph the following line # fails. optimizer.apply_gradients([(grads0, var0)])
def testSparse(self, use_resource): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: #for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) if use_resource: var0 = resource_variable_ops.ResourceVariable(var0_np) var1 = resource_variable_ops.ResourceVariable(var1_np) else: var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0_np_indices = np.array([0, 1], dtype=np.int32) grads0 = ops.IndexedSlices( constant_op.constant(grads0_np), constant_op.constant(grads0_np_indices), constant_op.constant([2])) grads1_np_indices = np.array([0, 1], dtype=np.int32) grads1 = ops.IndexedSlices( constant_op.constant(grads1_np), constant_op.constant(grads1_np_indices), constant_op.constant([2])) opt = sparse_adam_optimizer.SparseAdamOptimizer(epsilon=1e-7) update = opt.apply_gradients( zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval(), rtol=1e-3, atol=1e-3) self.assertAllClose([3.0, 4.0], var1.eval(), rtol=1e-3, atol=1e-3) beta1_power, beta2_power = opt._get_beta_accumulators() # Run 3 steps of Adam for t in range(1, 4): self.assertAllCloseAccordingToType(0.9**t, beta1_power.eval(), rtol=1e-3, atol=1e-3) self.assertAllCloseAccordingToType(0.999**t, beta2_power.eval(), rtol=1e-3, atol=1e-3) update.run() var0_np, m0, v0 = adam_update_numpy( var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adam_update_numpy( var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, var0.eval(), rtol=1e-3, atol=1e-3) self.assertAllCloseAccordingToType(var1_np, var1.eval(), rtol=1e-3, atol=1e-3)
def doTestBasic(self, use_resource=False, use_callable_params=False): for i, dtype in enumerate( [dtypes.half, dtypes.float32, dtypes.float64]): with self.session(graph=ops.Graph()): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) if use_resource: var0 = resource_variable_ops.ResourceVariable( var0_np, name="var0_%d" % i) var1 = resource_variable_ops.ResourceVariable( var1_np, name="var1_%d" % i) else: var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) learning_rate = lambda: 0.001 beta1 = lambda: 0.9 beta2 = lambda: 0.999 epsilon = lambda: 1e-8 if not use_callable_params: learning_rate = learning_rate() beta1 = beta1() beta2 = beta2() epsilon = epsilon() opt = sparse_adam_optimizer.SparseAdamOptimizer( learning_rate=learning_rate) update = opt.apply_gradients( zip([grads0, grads1], [var0, var1])) opt_variables = opt.variables() beta1_power, beta2_power = opt._get_beta_accumulators() self.assertIsNotNone(beta1_power) self.assertIsNotNone(beta2_power is not None) self.assertIn(beta1_power, opt_variables) self.assertIn(beta2_power, opt_variables) if not context.executing_eagerly(): with ops.Graph().as_default(): # Shouldn't return non-slot variables from other graphs. self.assertEqual(0, len(opt.variables())) self.evaluate(variables.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0), rtol=1e-3, atol=1e-3) self.assertAllClose([3.0, 4.0], self.evaluate(var1), rtol=1e-3, atol=1e-3) beta1_power, beta2_power = opt._get_beta_accumulators() # Run 3 steps of Adam for t in range(1, 4): if not context.executing_eagerly(): self.evaluate(update) elif t > 1: opt.apply_gradients(zip([grads0, grads1], [var0, var1])) self.assertAllCloseAccordingToType( 0.9**(t + 1), self.evaluate(beta1_power), rtol=1e-3, atol=1e-3) self.assertAllCloseAccordingToType( 0.999**(t + 1), self.evaluate(beta2_power), rtol=1e-3, atol=1e-3) var0_np, m0, v0 = adam_update_numpy( var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adam_update_numpy( var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0), rtol=1e-3, atol=1e-3) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1), rtol=1e-3, atol=1e-3) if use_resource: self.assertEqual("var0_%d/Adam:0" % (i, ), opt.get_slot(var=var0, name="m").name)