def testModelHasExpectedNumberOfParameters(self): batch_size = 5 height, width = 224, 224 inputs = tf.random_uniform((batch_size, height, width, 3)) with slim.arg_scope(inception.inception_v2_arg_scope()): inception.inception_v2_base(inputs) total_params, _ = slim.model_analyzer.analyze_vars(slim.get_model_variables()) self.assertAlmostEqual(10173112, total_params)
def testModelHasExpectedNumberOfParameters(self): batch_size = 5 height, width = 224, 224 inputs = tf.random_uniform((batch_size, height, width, 3)) with slim.arg_scope(inception.inception_v2_arg_scope()): inception.inception_v2_base(inputs) total_params, _ = slim.model_analyzer.analyze_vars( slim.get_model_variables()) self.assertAlmostEqual(10173112, total_params)
def testBuildAndCheckAllEndPointsUptoMixed5c(self): batch_size = 5 height, width = 224, 224 inputs = tf.random_uniform((batch_size, height, width, 3)) _, end_points = inception.inception_v2_base(inputs, final_endpoint='Mixed_5c') endpoints_shapes = { 'Mixed_3b': [batch_size, 28, 28, 256], 'Mixed_3c': [batch_size, 28, 28, 320], 'Mixed_4a': [batch_size, 14, 14, 576], 'Mixed_4b': [batch_size, 14, 14, 576], 'Mixed_4c': [batch_size, 14, 14, 576], 'Mixed_4d': [batch_size, 14, 14, 576], 'Mixed_4e': [batch_size, 14, 14, 576], 'Mixed_5a': [batch_size, 7, 7, 1024], 'Mixed_5b': [batch_size, 7, 7, 1024], 'Mixed_5c': [batch_size, 7, 7, 1024], 'Conv2d_1a_7x7': [batch_size, 112, 112, 64], 'MaxPool_2a_3x3': [batch_size, 56, 56, 64], 'Conv2d_2b_1x1': [batch_size, 56, 56, 64], 'Conv2d_2c_3x3': [batch_size, 56, 56, 192], 'MaxPool_3a_3x3': [batch_size, 28, 28, 192] } self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys()) for endpoint_name in endpoints_shapes: expected_shape = endpoints_shapes[endpoint_name] self.assertTrue(endpoint_name in end_points) self.assertListEqual( end_points[endpoint_name].get_shape().as_list(), expected_shape)
def build_model(model_name, inputs, num_classes, is_training, dropout_keep_prob): use_fcn = False if model_name.find('fcn') >= 0: use_fcn = True model_base_name = model_name[0:-4] else: model_base_name = model_name if model_base_name == 'vgg16': net = vgg16_base(inputs) elif model_base_name == 'inception_v1': with slim.arg_scope(inception.inception_v1_arg_scope()): net, _ = inception.inception_v1_base(inputs) elif model_base_name == 'inception_v2': with slim.arg_scope(inception.inception_v2_arg_scope()): net, _ = inception.inception_v2_base(inputs) elif model_base_name == 'inception_v3': with slim.arg_scope(inception.inception_v3_arg_scope()): net, _ = inception.inception_v3_base(inputs) else: raise Exception('model {} is not existed'.format(model_name)) with tf.variable_scope('not_pretrained'): if use_fcn: net = fully_convolutional_networks(net, num_classes, is_training, dropout_keep_prob) else: net = fully_connected_networks(net, num_classes, is_training, dropout_keep_prob) return net
def testBuildAndCheckAllEndPointsUptoMixed5c(self): batch_size = 5 height, width = 224, 224 inputs = tf.random_uniform((batch_size, height, width, 3)) _, end_points = inception.inception_v2_base(inputs, final_endpoint='Mixed_5c') endpoints_shapes = {'Mixed_3b': [batch_size, 28, 28, 256], 'Mixed_3c': [batch_size, 28, 28, 320], 'Mixed_4a': [batch_size, 14, 14, 576], 'Mixed_4b': [batch_size, 14, 14, 576], 'Mixed_4c': [batch_size, 14, 14, 576], 'Mixed_4d': [batch_size, 14, 14, 576], 'Mixed_4e': [batch_size, 14, 14, 576], 'Mixed_5a': [batch_size, 7, 7, 1024], 'Mixed_5b': [batch_size, 7, 7, 1024], 'Mixed_5c': [batch_size, 7, 7, 1024], 'Conv2d_1a_7x7': [batch_size, 112, 112, 64], 'MaxPool_2a_3x3': [batch_size, 56, 56, 64], 'Conv2d_2b_1x1': [batch_size, 56, 56, 64], 'Conv2d_2c_3x3': [batch_size, 56, 56, 192], 'MaxPool_3a_3x3': [batch_size, 28, 28, 192]} self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys()) for endpoint_name in endpoints_shapes: expected_shape = endpoints_shapes[endpoint_name] self.assertTrue(endpoint_name in end_points) self.assertListEqual(end_points[endpoint_name].get_shape().as_list(), expected_shape)
def testBuildOnlyUptoFinalEndpoint(self): batch_size = 5 height, width = 224, 224 endpoints = [ "Conv2d_1a_7x7", "MaxPool_2a_3x3", "Conv2d_2b_1x1", "Conv2d_2c_3x3", "MaxPool_3a_3x3", "Mixed_3b", "Mixed_3c", "Mixed_4a", "Mixed_4b", "Mixed_4c", "Mixed_4d", "Mixed_4e", "Mixed_5a", "Mixed_5b", "Mixed_5c", ] for index, endpoint in enumerate(endpoints): with tf.Graph().as_default(): inputs = tf.random_uniform((batch_size, height, width, 3)) out_tensor, end_points = inception.inception_v2_base(inputs, final_endpoint=endpoint) self.assertTrue(out_tensor.op.name.startswith("InceptionV2/" + endpoint)) self.assertItemsEqual(endpoints[: index + 1], end_points)
def testBuildBaseNetwork(self): batch_size = 5 height, width = 224, 224 inputs = tf.random_uniform((batch_size, height, width, 3)) mixed_5c, end_points = inception.inception_v2_base(inputs) self.assertTrue(mixed_5c.op.name.startswith("InceptionV2/Mixed_5c")) self.assertListEqual(mixed_5c.get_shape().as_list(), [batch_size, 7, 7, 1024]) expected_endpoints = [ "Mixed_3b", "Mixed_3c", "Mixed_4a", "Mixed_4b", "Mixed_4c", "Mixed_4d", "Mixed_4e", "Mixed_5a", "Mixed_5b", "Mixed_5c", "Conv2d_1a_7x7", "MaxPool_2a_3x3", "Conv2d_2b_1x1", "Conv2d_2c_3x3", "MaxPool_3a_3x3", ] self.assertItemsEqual(end_points.keys(), expected_endpoints)
def build(self, inputs, input_pixel_size, is_training, scope='img_inception'): """Inception for BEV feature extraction Args: inputs: a tensor of size [batch_size, height, width, channels]. input_pixel_size: size of the input (H x W) is_training: True for training, False fo validation/testing. scope: Optional scope for the variables. Returns: The net, a rank-4 tensor of size [batch, height_out, width_out, channels_out] and end_points dict. """ inception_config = self.config with tf.variable_scope(scope, 'img_inception', [inputs]) as scope: with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=is_training): if inception_config.inception_v == 'inception_v1': with slim.arg_scope(inception.inception_v1_arg_scope()): net, end_points = inception.inception_v1_base( inputs, scope=scope) elif inception_config.inception_v == 'inception_v2': with slim.arg_scope(inception.inception_v2_arg_scope()): net, end_points = inception.inception_v2_base( inputs, scope=scope) elif inception_config.inception_v == 'inception_v3': with slim.arg_scope(inception.inception_v3_arg_scope()): net, end_points = inception.inception_v3_base( inputs, scope=scope) else: raise ValueError('Invalid Inception version {},'.format( inception_config.inception_v)) with tf.variable_scope('upsampling'): # This feature extractor downsamples the input by a factor # of 32 downsampling_factor = 32 downsampled_shape = input_pixel_size / downsampling_factor upsampled_shape = downsampled_shape * \ inception_config.upsampling_multiplier feature_maps_out = tf.image.resize_bilinear( net, upsampled_shape) return feature_maps_out, end_points
def testBuildOnlyUptoFinalEndpoint(self): batch_size = 5 height, width = 224, 224 endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c', 'Mixed_4a', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c'] for index, endpoint in enumerate(endpoints): with tf.Graph().as_default(): inputs = tf.random_uniform((batch_size, height, width, 3)) out_tensor, end_points = inception.inception_v2_base( inputs, final_endpoint=endpoint) self.assertTrue(out_tensor.op.name.startswith( 'InceptionV2/' + endpoint)) self.assertItemsEqual(endpoints[:index+1], end_points)
def testBuildBaseNetwork(self): batch_size = 5 height, width = 224, 224 inputs = tf.random_uniform((batch_size, height, width, 3)) mixed_5c, end_points = inception.inception_v2_base(inputs) self.assertTrue(mixed_5c.op.name.startswith('InceptionV2/Mixed_5c')) self.assertListEqual(mixed_5c.get_shape().as_list(), [batch_size, 7, 7, 1024]) expected_endpoints = ['Mixed_3b', 'Mixed_3c', 'Mixed_4a', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c', 'Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3', 'MaxPool_3a_3x3'] self.assertItemsEqual(end_points.keys(), expected_endpoints)
def testInceptionV2_TotalCost(self): conv_params = { 'activation_fn': tf.nn.relu6, 'weights_regularizer': contrib_layers.l2_regularizer(0.00004), 'weights_initializer': tf.random_normal_initializer(stddev=0.03), 'trainable': True, 'biases_initializer': tf.constant_initializer(0.0), 'normalizer_fn': contrib_layers.batch_norm, 'normalizer_params': { 'is_training': False, 'decay': 0.9997, 'scale': True, 'epsilon': 0.001, } } tf.reset_default_graph() with slim.arg_scope([slim.layers.conv2d, slim.layers.separable_conv2d], **conv_params): # Build model. image = tf.zeros([1, 224, 224, 3]) net, _ = inception.inception_v2_base(image) logits = slim.layers.fully_connected( net, 1001, activation_fn=None, scope='logits', weights_initializer=tf.random_normal_initializer(stddev=1e-3), biases_initializer=tf.constant_initializer(0.0)) # Instantiate regularizers. flop_reg = flop_regularizer.GammaFlopsRegularizer( [logits.op], gamma_threshold=0.5) p100_reg = latency_regularizer.GammaLatencyRegularizer( [logits.op], gamma_threshold=0.5, hardware='P100') v100_reg = latency_regularizer.GammaLatencyRegularizer( [logits.op], gamma_threshold=0.5, hardware='V100') model_size_reg = model_size_regularizer.GammaModelSizeRegularizer( [logits.op], gamma_threshold=0.5) with self.cached_session(): tf.global_variables_initializer().run() # Verify costs are expected. self.assertAllClose(3.86972e+09, flop_reg.get_cost()) self.assertAllClose(517536.0, p100_reg.get_cost()) self.assertAllClose(173330.453125, v100_reg.get_cost()) self.assertAllClose(1.11684e+07, model_size_reg.get_cost())
def testInceptionV2(self, hardware): image = tf.zeros([1, 224, 224, 3]) net, _ = inception.inception_v2_base(image) g = tf.get_default_graph() self.regularizer = latency_regularizer.GammaLatencyRegularizer( [net.op], gamma_threshold=0.5, hardware=hardware) # Compute-bound convolution. op = g.get_operation_by_name( 'InceptionV2/Mixed_3c/Branch_2/Conv2d_0c_3x3/Conv2D') # FLOP cost = 2 * NHWRSCK expected_cost = (2 * 28 * 28 * 3 * 3 * 96 * 96 / resource_function.PEAK_COMPUTE[hardware]) self.assertAllClose(expected_cost, self.get_cost([op])) # Memory-bound convolution. op = g.get_operation_by_name( 'InceptionV2/Conv2d_1a_7x7/separable_conv2d') # Memory cost = input_tensor + weight_tensor + output_tensor # = NHWC + RSCK + NHWK # Note that this is a pointwise convolution with kernel 1x1. expected_cost = ((112 * 112 * 24 + 24 * 64 + 112 * 112 * 64) * 4 / resource_function.MEMORY_BANDWIDTH[hardware]) self.assertAllClose(expected_cost, self.get_cost([op]))