def testSimpleCodeView(self): ops.reset_default_graph() opts = model_analyzer.TRAINABLE_VARS_PARAMS_STAT_OPTIONS.copy() outfile = os.path.join(test.get_temp_dir(), 'dump') opts['output'] = 'file:outfile=' + outfile opts['account_type_regexes'] = ['.*'] opts['show_name_regexes'] = ['.*model_analyzer_testlib.*'] opts['account_displayed_op_only'] = False # TODO(xpan): Test 'micros'. Since the execution time changes each run, # it's a bit difficult to test it now. opts['select'] = [ 'bytes', 'params', 'float_ops', 'num_hidden_ops', 'device', 'input_shapes' ] with session.Session() as sess: x = lib.BuildSmallModel() sess.run(variables.global_variables_initializer()) run_meta = config_pb2.RunMetadata() _ = sess.run(x, options=config_pb2.RunOptions( trace_level=config_pb2.RunOptions.FULL_TRACE), run_metadata=run_meta) model_analyzer.print_model_analysis( sess.graph, run_meta, tfprof_cmd='code', tfprof_options=opts) with gfile.Open(outfile, 'r') as f: # pylint: disable=line-too-long self.assertEqual( 'node name | output bytes | # parameters | # float_ops | assigned devices | input', f.read()[0:80])
def testSelectEverything(self): ops.reset_default_graph() opts = model_analyzer.TRAINABLE_VARS_PARAMS_STAT_OPTIONS.copy() outfile = os.path.join(test.get_temp_dir(), 'dump') opts['output'] = 'file:outfile=' + outfile opts['account_type_regexes'] = ['.*'] opts['select'] = [ 'params', 'float_ops', 'occurrence', 'device', 'op_types', 'input_shapes' ] with session.Session() as sess, ops.device('/cpu:0'): x = lib.BuildSmallModel() sess.run(variables.global_variables_initializer()) run_meta = config_pb2.RunMetadata() _ = sess.run(x, options=config_pb2.RunOptions( trace_level=config_pb2.RunOptions.FULL_TRACE), run_metadata=run_meta) model_analyzer.print_model_analysis( sess.graph, run_meta, tfprof_options=opts) with gfile.Open(outfile, 'r') as f: # pylint: disable=line-too-long self.assertEqual( 'node name | # parameters | # float_ops | assigned devices | op types | op count (run|defined) | input shapes\n_TFProfRoot (--/451 params, --/10.44k flops, _kTFScopeParent, --/7|--/35, )\n Conv2D (0/0 params, 5.83k/5.83k flops, /job:localhost/replica:0/task:0/cpu:0, /job:localhost/replica:0/task:0/cpu:0|Conv2D, 1/1|1/1, 0:2x6x6x3|1:3x3x3x6)\n Conv2D_1 (0/0 params, 4.61k/4.61k flops, /job:localhost/replica:0/task:0/cpu:0, /job:localhost/replica:0/task:0/cpu:0|Conv2D, 1/1|1/1, 0:2x3x3x6|1:2x2x6x12)\n DW (3x3x3x6, 162/162 params, 0/0 flops, /job:localhost/replica:0/task:0/cpu:0, /job:localhost/replica:0/task:0/cpu:0|VariableV2|_trainable_variables, 1/2|1/10, )\n DW/Assign (0/0 params, 0/0 flops, Assign, 0/0|1/1, 0:3x3x3x6|1:3x3x3x6)\n DW/Initializer (0/0 params, 0/0 flops, _kTFScopeParent, 0/0|1/7, )\n DW/Initializer/random_normal (0/0 params, 0/0 flops, Add, 0/0|1/6, 0:3x3x3x6|1:1)\n DW/Initializer/random_normal/RandomStandardNormal (0/0 params, 0/0 flops, RandomStandardNormal, 0/0|1/1, 0:4)\n DW/Initializer/random_normal/mean (0/0 params, 0/0 flops, Const, 0/0|1/1, )\n DW/Initializer/random_normal/mul (0/0 params, 0/0 flops, Mul, 0/0|1/1, 0:3x3x3x6|1:1)\n DW/Initializer/random_normal/shape (0/0 params, 0/0 flops, Const, 0/0|1/1, )\n DW/Initializer/random_normal/stddev (0/0 params, 0/0 flops, Const, 0/0|1/1, )\n DW/read (0/0 params, 0/0 flops, /job:localhost/replica:0/task:0/cpu:0, /job:localhost/replica:0/task:0/cpu:0|Identity, 1/1|1/1, 0:3x3x3x6)\n DW2 (2x2x6x12, 288/288 params, 0/0 flops, /job:localhost/replica:0/task:0/cpu:0, /job:localhost/replica:0/task:0/cpu:0|VariableV2|_trainable_variables, 1/2|1/10, )\n DW2/Assign (0/0 params, 0/0 flops, Assign, 0/0|1/1, 0:2x2x6x12|1:2x2x6x12)\n DW2/Initializer (0/0 params, 0/0 flops, _kTFScopeParent, 0/0|1/7, )\n DW2/Initializer/random_normal (0/0 params, 0/0 flops, Add, 0/0|1/6, 0:2x2x6x12|1:1)\n DW2/Initializer/random_normal/RandomStandardNormal (0/0 params, 0/0 flops, RandomStandardNormal, 0/0|1/1, 0:4)\n DW2/Initializer/random_normal/mean (0/0 params, 0/0 flops, Const, 0/0|1/1, )\n DW2/Initializer/random_normal/mul (0/0 params, 0/0 flops, Mul, 0/0|1/1, 0:2x2x6x12|1:1)\n DW2/Initializer/random_normal/shape (0/0 params, 0/0 flops, Const, 0/0|1/1, )\n DW2/Initializer/random_normal/stddev (0/0 params, 0/0 flops, Const, 0/0|1/1, )\n DW2/read (0/0 params, 0/0 flops, /job:localhost/replica:0/task:0/cpu:0, /job:localhost/replica:0/task:0/cpu:0|Identity, 1/1|1/1, 0:2x2x6x12)\n ScalarW (1, 1/1 params, 0/0 flops, VariableV2|_trainable_variables, 0/0|1/10, )\n ScalarW/Assign (0/0 params, 0/0 flops, Assign, 0/0|1/1, 0:1|1:1)\n ScalarW/Initializer (0/0 params, 0/0 flops, _kTFScopeParent, 0/0|1/7, )\n ScalarW/Initializer/random_normal (0/0 params, 0/0 flops, Add, 0/0|1/6, 0:1|1:1)\n ScalarW/Initializer/random_normal/RandomStandardNormal (0/0 params, 0/0 flops, RandomStandardNormal, 0/0|1/1, 0:0)\n ScalarW/Initializer/random_normal/mean (0/0 params, 0/0 flops, Const, 0/0|1/1, )\n ScalarW/Initializer/random_normal/mul (0/0 params, 0/0 flops, Mul, 0/0|1/1, 0:1|1:1)\n ScalarW/Initializer/random_normal/shape (0/0 params, 0/0 flops, Const, 0/0|1/1, )\n ScalarW/Initializer/random_normal/stddev (0/0 params, 0/0 flops, Const, 0/0|1/1, )\n ScalarW/read (0/0 params, 0/0 flops, Identity, 0/0|1/1, 0:1)\n init (0/0 params, 0/0 flops, NoOp, 0/0|1/1, 0:1|1:3x3x3x6|2:2x2x6x12)\n zeros (0/0 params, 0/0 flops, /job:localhost/replica:0/task:0/cpu:0, /job:localhost/replica:0/task:0/cpu:0|Const, 1/1|1/1, )\n', f.read())
def testCodeViewLeafGraphNode(self): ops.reset_default_graph() opts = model_analyzer.TRAINABLE_VARS_PARAMS_STAT_OPTIONS.copy() opts['account_type_regexes'] = ['.*'] opts['account_displayed_op_only'] = False opts['select'] = [ 'bytes', 'params', 'float_ops', 'device' ] opts['output'] = 'none' with session.Session() as sess: x = lib.BuildSmallModel() sess.run(variables.global_variables_initializer()) run_meta = config_pb2.RunMetadata() _ = sess.run(x, options=config_pb2.RunOptions( trace_level=config_pb2.RunOptions.FULL_TRACE), run_metadata=run_meta) tfprof_node = model_analyzer.print_model_analysis( sess.graph, run_meta, tfprof_cmd='code', tfprof_options=opts) leaf = tfprof_node while leaf.children: self.assertEqual(0, len(leaf.graph_nodes)) leaf = leaf.children[0] self.assertEqual(1, len(leaf.graph_nodes))
def testDumpToFile(self): ops.reset_default_graph() opts = model_analyzer.TRAINABLE_VARS_PARAMS_STAT_OPTIONS.copy() outfile = os.path.join(test.get_temp_dir(), 'dump') opts['output'] = 'file:outfile=' + outfile with session.Session() as sess: _ = lib.BuildSmallModel() model_analyzer.print_model_analysis(sess.graph, tfprof_options=opts) with gfile.Open(outfile, 'r') as f: self.assertEqual(u'node name | # parameters\n' '_TFProfRoot (--/451 params)\n' ' DW (3x3x3x6, 162/162 params)\n' ' DW2 (2x2x6x12, 288/288 params)\n' ' ScalarW (1, 1/1 params)\n', f.read())