def test_adder_transition_to_powers(self): num_steps = 3 dtype = dtypes.float64 adder = level_trend.AdderStateSpaceModel( configuration=state_space_model.StateSpaceModelConfiguration( dtype=dtype)) test_utils.transition_power_test_template( test_case=self, model=adder, num_steps=num_steps)
def test_adder_noise_accumulator(self): num_steps = 3 dtype = dtypes.float64 use_level_noise = True adder = level_trend.AdderStateSpaceModel( use_level_noise=use_level_noise, configuration=state_space_model.StateSpaceModelConfiguration( dtype=dtype)) test_utils.noise_accumulator_test_template( test_case=self, model=adder, num_steps=num_steps)
def _replicate_level_trend_models(multivariate_configuration, univariate_configuration): """Helper function to construct a multivariate level/trend component.""" with variable_scope.variable_scope("adder"): # Construct a level and trend model for each feature, with correlated # transition noise. adder_features = [] for feature in range(multivariate_configuration.num_features): with variable_scope.variable_scope("feature{}".format(feature)): adder_features.append(level_trend.AdderStateSpaceModel( configuration=univariate_configuration)) adder_part = state_space_model.StateSpaceCorrelatedFeaturesEnsemble( ensemble_members=adder_features, configuration=multivariate_configuration) return adder_part