def bayes_dense_2(x, num_units, name='dense', gamma=1.0, activation=None): with tf.variable_scope(name, reuse=tf.AUTO_REUSE): W_mu = tf.get_variable('W_mu', [x.shape[1], num_units]) W_rho = tf.nn.softplus( tf.get_variable('W_rho', [x.shape[1], num_units], initializer=tf.random_uniform_initializer(-3., -2.))) b_mu = tf.get_variable('b_mu', [num_units], initializer=tf.zeros_initializer()) b_rho = tf.nn.softplus( tf.get_variable('b_rho', [num_units], initializer=tf.random_uniform_initializer(-3., -2.))) xW_mean = tf.matmul(x, W_mu) xW_std = tf.sqrt(tf.matmul(tf.square(x), tf.square(W_rho)) + 1e-6) xW = xW_mean + xW_std*tf.random.normal(tf.shape(xW_mean)) b = b_mu + b_rho * tf.random.normal(b_mu.shape) x = xW + b if activation == 'relu': x = tf.nn.relu(x) # kl divergence kld_W = tf.reduce_sum(kl_divergence(Normal(W_mu, W_rho), Normal(0., gamma))) kld_b = tf.reduce_sum(kl_divergence(Normal(b_mu, b_rho), Normal(0., gamma))) kld = kld_W + kld_b return x, kld
def Gelu(self, x): '''Implementation for GELU Activation Function Arguments: x (tensor): Input tensor Returns: Tensor, output of 'GELU' activation function ''' normal = Normal(loc=0., scale=1.) return x * normal.cdf(x)
def _build_anet(self, name, trainable): with tf.compat.v1.variable_scope(name): l1 = tf.compat.v1.layers.dense(self.tfs, 200, tf.nn.relu, trainable=trainable) mu = A_BOUND * tf.compat.v1.layers.dense(l1, A_DIM, tf.nn.tanh, trainable=trainable) sigma = tf.compat.v1.layers.dense(l1, A_DIM, tf.nn.softplus, trainable=trainable) norm_dist = Normal(loc=mu, scale=sigma) params = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.GLOBAL_VARIABLES, scope=name) return norm_dist, params
def gaussian_logp(y, logd): assert y.shape[0] == logd.shape[ 0] and y.dtype == logd.dtype and logd.shape.ndims == 1 orig_dtype = y.dtype y, logd = map(tf.to_float, [y, logd]) return tf.cast( tf.reduce_sum(Normal(0., 1.).log_prob(y)) / int(y.shape[0]) + tf.reduce_mean(logd), dtype=orig_dtype)
def build_forward(*, x, dequant_flow, flow, flow_kwargs): dequant_x, dequant_logd = dequant_flow.forward(x, **flow_kwargs) y, main_logd = flow.forward(dequant_x, **flow_kwargs) logp = sumflat(Normal(0., 1.).log_prob(y)) assert dequant_logd.shape == main_logd.shape == logp.shape == [ y.shape[0] ] == [dequant_x.shape[0]] == [x.shape[0]] total_logp = dequant_logd + main_logd + logp loss = -tf.reduce_mean(total_logp) return dequant_x, y, loss, total_logp
def inverse(self, y, flow_kwargs): ''' g = f^{-1} y = g^{-1}(xz) p(y) = p(xz) * |det(J_g^{-1}^{-1}(y))| = p(xz) * |det(J_g(y))| ''' y = tf.reshape(y, [-1] + y.shape.as_list()[-3:]) logpy = sumflat(Normal(0., 1.).log_prob(y)) xz = y xz = tf.reshape(xz, [-1, 8, 8, 64*(x_dims+extra_dims)]) xz, logd_flow = self.flow.inverse(xz, **flow_kwargs) return xz, logpy + logd_flow
def forward(self, x, z, flow_kwargs): ''' y = f(xz) xz = f^{-1}(y) p(xz) = p(y) * |det(J_f^{-1}^{-1}(xz))| = p(y) * |det(J_f(xz))| ''' H, W, Cx = x.shape.as_list()[-3:] x = tf.reshape(x, [-1, H, W, Cx]) z = tf.reshape(z, [-1, H, W, extra_dims]) xz = tf.concat([x, z], axis=-1) y, logd_flow = self.flow.forward(xz, **flow_kwargs) logpy = sumflat(Normal(0., 1.).log_prob(y)) return y, logpy + logd_flow
def __init__(self, n_input, n_list, n_y=None,y_weight=100): ''' n_input - number of input neurons n_list - list of numbers of neurons in the hidden layers n_y: optional - number of features that will be given as input y during training y_weight - relative weight of losses (VAE vs regression for y features). Trial-and-error ''' # input data self.X = tf.placeholder(tf.float32, shape=(None, n_input)) # input y features if (n_y is not None): self.y = tf.placeholder(tf.float32, shape=(None, n_y)) # encoder self.encoder_layers = [] # input layer previous = n_input # current is the output of each layer (skip last because there is nothing after it) for current in n_list[:-1]: h = DenseLayer(previous,current) self.encoder_layers.append(h) previous = current # latent features number latent = n_list[-1] encoder_output = DenseLayer(current,latent*2,activation='none') self.encoder_layers.append(encoder_output) # feed forward through encoder c_X = self.X for layer in self.encoder_layers: c_X = layer.feed_forward(c_X) # c_X now holds the output of the encoder # first half are the means self.means = c_X[:,:latent] # second half are the std; must be positive; +1e-6 for smoothing self.std = tf.nn.softplus(c_X[:,latent:]) + 1e-6 # optional loss for steered latent features if (n_y is not None): self.yhat = self.means[:,:n_y] self.error = tf.losses.mean_squared_error(labels=self.y,predictions=self.yhat) # reparameterization trick normal = Normal(loc=self.means,scale=self.std) self.Z = normal.sample() # decoder self.decoder_layers = [] previous = latent for current in reversed(n_list[:-1]): h = DenseLayer(previous,current) self.decoder_layers.append(h) previous = current # output is the reconstruction decoder_output = DenseLayer(previous,n_input,activation=lambda x:x) self.decoder_layers.append(decoder_output) #feed forward through decoder, using the sampled 'data' c_X = self.Z for layer in self.decoder_layers: c_X = layer.feed_forward(c_X) logits = c_X # use logits for cost function below neg_cross_entropy = -tf.nn.sigmoid_cross_entropy_with_logits(labels=self.X, logits=logits) neg_cross_entropy = tf.reduce_sum(neg_cross_entropy, 1) # output self.y_prob = Bernoulli(logits=logits) # sample from output self.post_pred = self.y_prob.sample() self.post_pred_probs = tf.nn.sigmoid(logits) # generate 'de-novo' output self.gen = tf.Variable(0) Z_std = Normal(0.0,1.0).sample([self.gen,latent]) c_X = Z_std for layer in self.decoder_layers: c_X = layer.feed_forward(c_X) logits = c_X prior_pred_dist = Bernoulli(logits=logits) self.prior_pred = prior_pred_dist.sample() self.prior_pred_probs = tf.nn.sigmoid(logits) # manually input Z self.Z_input = tf.placeholder(np.float32, shape=(None, latent)) c_X = self.Z_input for layer in self.decoder_layers: c_X = layer.feed_forward(c_X) logits = c_X self.manual_prior_prob = tf.nn.sigmoid(logits) # cost function # Kullback–Leibler divergence kl = -tf.log(self.std) + 0.5*(self.std**2 + self.means**2) - 0.5 kl = tf.reduce_sum(kl, axis=1) # ELBO self.elbo = tf.reduce_sum(neg_cross_entropy - kl) if (n_y is None): # only ELBO self.optimizer = tf.train.RMSPropOptimizer(learning_rate=0.001).minimize(-self.elbo) else: # weighted regression loss and ELBO self.optimizer = tf.train.RMSPropOptimizer(learning_rate=0.001).minimize( tf.reduce_sum(y_weight*self.error-self.elbo)) self.init = tf.global_variables_initializer() self.session = tf.Session() self.session.run(self.init)
y_train_np = func(x_train_np, 0.03) x_test_np = np.random.rand(num_test, 1) y_test_np = func(x_test_np, 0.03) np.random.seed(int(time.time())) x = tf.placeholder(tf.float32, shape=[None, 1]) y = tf.placeholder(tf.float32, shape=[None, 1]) out, kld1 = bayes_dense(x, 100, activation='relu', name='dense1') out, kld2 = bayes_dense(out, 100, activation='relu', name='dense2') out, kld3 = bayes_dense(out, 2, name='dense3') mu, sigma = tf.split(out, 2, axis=-1) sigma = tf.nn.softplus(sigma) # log-likelihood ll = tf.reduce_mean(Normal(mu, sigma).log_prob(y)) # kl-divergence kld = args.kl_coeff * (kld1 + kld2 + kld3) / np.float32(num_train) if not args.test: if not os.path.isdir('results/bnn'): os.makedirs('results/bnn') saver = tf.train.Saver(tf.trainable_variables()) lr = tf.placeholder(tf.float32) train_op = tf.train.AdamOptimizer(lr).minimize(-ll + kld) def get_lr(t): if t < 0.25 * args.num_steps: return args.lr elif t < 0.5 * args.num_steps:
def __init__(self, n_input, n_list, ent_weight=1, lr=0.001): ''' number of input neurons and a list of the number of neurons in the encoder hidden layers The last number provided should be the number of latent features desired The decoder will have an inverted architecture Note: the actual number of neurons in the last layer of the encoder will be x2, for mean and std ''' # input data self.X = tf.placeholder(tf.float32, shape=(None, n_input)) # encoder self.encoder_layers = [] # input layer previous = n_input # in case there is only one hidden layer (for loop will be skipped) current = n_input # current is the output of each layer (skip last because there is nothing after it) for current in n_list[:-1]: h = DenseLayer(previous, current) self.encoder_layers.append(h) previous = current # latent features number latent = n_list[-1] encoder_output = DenseLayer(current, latent * 2, activation='none') self.encoder_layers.append(encoder_output) # feed forward through encoder c_X = self.X for layer in self.encoder_layers: c_X = layer.feed_forward(c_X) # c_X now holds the output of the encoder # first half are the means self.means = c_X[:, :latent] # second half are the std; must be positive; +1e-6 for smoothing self.std = tf.nn.softplus(c_X[:, latent:]) + 1e-6 # reparameterization trick normal = Normal(loc=self.means, scale=self.std) self.Z = normal.sample() # decoder self.decoder_layers = [] previous = latent for current in reversed(n_list[:-1]): h = DenseLayer(previous, current) self.decoder_layers.append(h) previous = current # output is the reconstruction decoder_output = DenseLayer(previous, n_input, activation=lambda x: x) self.decoder_layers.append(decoder_output) #feed forward through decoder, using the sampled 'data' c_X = self.Z for layer in self.decoder_layers: c_X = layer.feed_forward(c_X) logits = c_X # use logits for cost function below neg_cross_entropy = -tf.nn.sigmoid_cross_entropy_with_logits( labels=self.X, logits=logits) neg_cross_entropy = tf.reduce_sum(neg_cross_entropy, 1) # output self.y_prob = Bernoulli(logits=logits) # sample from output self.post_pred = self.y_prob.sample() self.post_pred_probs = tf.nn.sigmoid(logits) # generate 'de-novo' output self.gen = tf.Variable(0) Z_std = Normal(0.0, 1.0).sample([self.gen, latent]) c_X = Z_std for layer in self.decoder_layers: c_X = layer.feed_forward(c_X) logits = c_X prior_pred_dist = Bernoulli(logits=logits) self.prior_pred = prior_pred_dist.sample() self.prior_pred_probs = tf.nn.sigmoid(logits) # manually input Z self.Z_input = tf.placeholder(np.float32, shape=(None, latent)) c_X = self.Z_input for layer in self.decoder_layers: c_X = layer.feed_forward(c_X) logits = c_X self.manual_prior_prob = tf.nn.sigmoid(logits) # cost function # Kullback–Leibler divergence kl = -tf.log(self.std) + 0.5 * (self.std**2 + self.means**2) - 0.5 kl = tf.reduce_sum(kl, axis=1) # ELBO self.elbo = tf.reduce_sum(ent_weight * neg_cross_entropy - kl) self.optimizer = tf.train.RMSPropOptimizer( learning_rate=lr).minimize(-self.elbo) self.init = tf.global_variables_initializer() self.session = tf.Session() self.session.run(self.init)
def gaussian_sample_logp(shape, dtype): eps = tf.random_normal(shape) logp = Normal(0., 1.).log_prob(eps) assert logp.shape == eps.shape logp = tf.reduce_sum(tf.layers.flatten(logp), axis=1) return tf.cast(eps, dtype=dtype), tf.cast(logp, dtype=dtype)
def prob(args): # mean, std, act_taken = args mean, act_taken = args std = np.float64(0.75) prob = Normal(loc=mean, scale=std).prob(act_taken) return prob
def __init__(self, image_shape=(128, 128, 3), conv_param=(3, 16, True), n_list=[256, 32]): # input data self.X = tf.placeholder(tf.float32, shape=(None, *image_shape)) # encoder self.encoder_layers = [] # convolution layer h = Conv2DLayer(image_shape[2], conv_param[0], conv_param[1], conv_param[2]) self.encoder_layers.append(h) # flatten layer self.encoder_layers.append(FlattenLayer()) # calculate number of input neurons to the FC layer previous = image_shape[0] * image_shape[1] * conv_param[1] if conv_param[2]: previous = previous // 4 # save for later flat = previous # current is the output of each layer (skip last because there is nothing after it) for current in n_list[:-1]: h = DenseLayer(previous, current) self.encoder_layers.append(h) previous = current # latent features number latent = n_list[-1] encoder_output = DenseLayer(current, latent * 2, activation='none') self.encoder_layers.append(encoder_output) # feed forward through encoder c_X = self.X for layer in self.encoder_layers: c_X = layer.feed_forward(c_X) # c_X now holds the output of the encoder # first half are the means self.means = c_X[:, :latent] # second half are the std; must be positive; +1e-6 for smoothing self.std = tf.nn.softplus(c_X[:, latent:]) + 1e-6 # reparameterization trick normal = Normal(loc=self.means, scale=self.std) self.Z = normal.sample() # decoder self.decoder_layers = [] previous = latent for current in reversed(n_list[:-1]): h = DenseLayer(previous, current) self.decoder_layers.append(h) previous = current decoder_output = DenseLayer(previous, flat, activation=lambda x: x) self.decoder_layers.append(decoder_output) #feed forward through decoder, using the sampled 'data' c_X = self.Z for layer in self.decoder_layers: c_X = layer.feed_forward(c_X) # reshape if (conv_param[2]): shape = [ -1, image_shape[0] // 2, image_shape[0] // 2, conv_param[1] ] else: shape = [-1, image_shape[0], image_shape[0], conv_param[1]] c_X = tf.reshape(c_X, shape) # convolution transpose self.trans_k = tf.Variable( tf.truncated_normal( [conv_param[0], conv_param[0], image_shape[2], conv_param[1]], stddev=0.1)) if (conv_param[2]): strides = (1, 2, 2, 1) else: strides = (1, 1, 1, 1) c_X = tf.nn.conv2d_transpose(c_X, self.trans_k, strides=strides, padding='SAME', output_shape=[50, *image_shape]) # output logit logits = c_X # use logits for cost function below neg_cross_entropy = -tf.nn.sigmoid_cross_entropy_with_logits( labels=self.X, logits=logits) neg_cross_entropy = tf.reduce_sum(neg_cross_entropy, 1) # output self.y_prob = Bernoulli(logits=logits) # sample from output self.post_pred = self.y_prob.sample() self.post_pred_probs = tf.nn.sigmoid(logits) # generate 'de-novo' output self.gen = tf.Variable(0) Z_std = Normal(0.0, 1.0).sample([self.gen, latent]) c_X = Z_std for layer in self.decoder_layers: c_X = layer.feed_forward(c_X) c_X = tf.reshape(c_X, shape) c_X = tf.nn.conv2d_transpose(c_X, self.trans_k, strides=strides, padding='SAME', output_shape=[50, *image_shape]) logits = c_X prior_pred_dist = Bernoulli(logits=logits) self.prior_pred = prior_pred_dist.sample() self.prior_pred_probs = tf.nn.sigmoid(logits) # manually input Z self.Z_input = tf.placeholder(np.float32, shape=(None, latent)) c_X = self.Z_input for layer in self.decoder_layers: c_X = layer.feed_forward(c_X) logits = c_X self.manual_prior_prob = tf.nn.sigmoid(logits) # cost function # Kullback–Leibler divergence kl = -tf.log(self.std) + 0.5 * (self.std**2 + self.means**2) - 0.5 kl = tf.reduce_sum(kl, axis=1) # ELBO self.elbo = tf.reduce_sum(neg_cross_entropy - kl) self.optimizer = tf.train.RMSPropOptimizer( learning_rate=0.001).minimize(-self.elbo) self.init = tf.global_variables_initializer() self.session = tf.Session() self.session.run(self.init)
def log_prob(args): # mean, std, act_taken = args mean, act_taken = args std = 0.75 log_prob = Normal(loc=mean, scale=std).log_prob(act_taken) return log_prob
def gps_action(args): # mean, std = args mean = args std = np.float64(0.75) action = Normal(loc=mean[0], scale=std).sample(1) return [action[0], mean[0]]
def action(args): # mean, std = args mean = args std = 0.75 action = Normal(loc=mean[0], scale=std).sample(1) return [action[0], mean[0]]
def probit(x): normal = TFNormal(loc=0., scale=1.) return normal.cdf(x)
x = tf.placeholder(tf.float32, shape=[None, 1]) y = tf.placeholder(tf.float32, shape=[None, 1]) # define network # BayesDense(1, 100) - ReLU # BayesDense(100, 100) - ReLU # BayesDense(100, 2) # make sure to collect every kl-divergences ######################################################### out, kld1 = ######################################################### mu, sigma = tf.split(out, 2, axis=-1) sigma = tf.nn.softplus(sigma) # log-likelihood ll = tf.reduce_mean(Normal(mu, sigma).log_prob(y)) # kl-divergence kld = args.kl_coeff * (kld1 + kld2 + kld3) / np.float32(num_train) if not args.test: if not os.path.isdir('results/bnn'): os.makedirs('results/bnn') saver = tf.train.Saver(tf.trainable_variables()) lr = tf.placeholder(tf.float32) ######################################################### train_op = tf.train.AdamOptimizer(lr).minimize(########) ######################################################### def get_lr(t): if t < 0.25 * args.num_steps:
class OutputNodeClassification(OutputNodeBase): def __init__(self, y_train_tf, y_test_tf, n_samples, variance_bias, dtype): OutputNodeBase.__init__(self, y_train_tf, y_test_tf, n_samples) self.norm = Normal(loc=tf.constant(0.0, dtype), scale=tf.constant(1.0, dtype)) self.dtype = dtype self.variance_bias = variance_bias def set_nodes_as_input(self, list_of_input_nodes): # Override from BaseNode assert ( len(list_of_input_nodes) == 1 ), "The last node should have just one input, currently {}".format( len(list_of_input_nodes)) self.list_of_input_nodes = list_of_input_nodes def get_logz(self): # Using step function as likelihood with noise is equivalent to Gaussian cdf. # Calculate: # log E[ p(y | f^L)] = log \int p(y | f^L) q^\cavity(f^L | x) # = log \int p(y | f^L) N(f^L | input_mean, input_vars) # with p(y | f^L) a step function (f^L bigger or equal to 0 classified as y=1) # By samples: # log 1/S \sum_{s=1}^S \Phi((y_{i,s} * input_means) / \sqrt(input_vars)) # Using log cdf for robustness input_means, input_vars = self.get_input() S = tf.shape(input_means)[0] # Parameter of the log cdf alpha = (tf.cast(self.y_train_tf, self.dtype) * input_means / tf.sqrt(input_vars + self.variance_bias)) return tf.reduce_logsumexp(self.norm.log_cdf(alpha), 0) - tf.log( tf.cast(S, self.dtype)) def calculate_log_likelihood(self): # The only difference with the function above is that # the means and vars should be calculated using the psoterior instead of the cavity # and y_test should be used. input_means, input_vars = self.get_input() S = tf.shape(input_means)[0] # Parameter of the log cdf alpha = (tf.cast(self.y_test_tf, self.dtype) * input_means / tf.sqrt(input_vars + self.variance_bias)) return tf.reduce_logsumexp(self.norm.log_cdf(alpha), 0) - tf.log( tf.cast(S, self.dtype)) def get_predicted_values(self): input_means, input_vars = self.get_input() # S, N, 1 S = tf.shape(input_means)[0] # (S, N, 1) alpha = input_means / tf.sqrt(input_vars + self.variance_bias) # (N, 1) prob = tf.exp( tf.reduce_logsumexp(self.norm.log_cdf(alpha), 0) - tf.log(tf.cast(S, self.dtype))) # label[n] = -1 if input_means[n] < 0 else 1 labels = tf.where( tf.less(tf.reduce_sum(input_means, 0), tf.zeros_like(prob)), -1 * tf.ones_like(prob), tf.ones_like(prob), ) return labels, prob def sample_from_latent(self): input_means, input_vars = self.get_input() # S, N, 1 # Returns samples from H^L return tf.random_normal( tf.shape(self.input_means), mean=self.input_means, stddev=tf.sqrt(self.input_vars), seed=3, dtype=self.dtype, ) # seed=3
def __init__(self, y_train_tf, y_test_tf, n_samples, variance_bias, dtype): OutputNodeBase.__init__(self, y_train_tf, y_test_tf, n_samples) self.norm = Normal(loc=tf.constant(0.0, dtype), scale=tf.constant(1.0, dtype)) self.dtype = dtype self.variance_bias = variance_bias