示例#1
0
def create_model(config, labels, transfer_learning):
    """Create the model for training"""

    if transfer_learning == False:

        m = build_cnn(config, len(labels))

    else:

        base_model = NASNetMobile(
            # input_tensor = Input(shape = (256, 256, 3)),
            input_shape=(224, 224, 3),
            include_top=False,
            weights="imagenet",
            pooling="avg")

        base_model.trainable = False  # This is set to true during finetuning

        # Alternative 1: Functional API

        inputs = Input(shape=(224, 224, 3))

        # The base model contains batchnorm layers. We want to keep them in inference mode when we unfreeze the base model for fine-tuning, so we make sure that the base_model is running in inference mode here.
        x = base_model(inputs, training=False)

        # Convert features of shape `base_model.output_shape[1:]` to vectors
        # x = GlobalAveragePooling2D()(x)

        x = Dense(50, activation="relu")(x)

        # Regularize with dropout
        x = Dropout(0.2)(x)

        outputs = Dense(len(labels), activation="sigmoid")(x)

        m = Model(inputs, outputs)

        # Alternative 2: Sequential API

        # m = Sequential([
        #     base_model,
        #     Flatten(),
        #     Dense(50, activation = "relu"),
        #     Dense(len(labels), activation = "sigmoid")
        # ])

    F2Score = MultiLabelFBeta(n_class=len(labels), beta=2, threshold=0.4)

    m.compile(optimizer=config.optimizer,
              loss='binary_crossentropy',
              metrics=["AUC", F2Score])

    m.summary()

    return m, base_model, F2Score
示例#2
0
文件: applications.py 项目: subpic/ku
def get_model_imagenet(net_name, input_shape=None,
                       plot=False, **kwargs):
    """Returns ImageNet models"""

    print('Loading model', net_name if isinstance(net_name, str)\
                                    else net_name.__name__)

    if net_name == ResNet50 or net_name == 'ResNet50':
        base_model = ResNet50(weights='imagenet', include_top=False,
                              input_shape=input_shape, **kwargs)
        feats = base_model.layers[-2]

    elif net_name == NASNetMobile or net_name == 'NASNetMobile':
        base_model = NASNetMobile(weights='imagenet',
                                  include_top=True,
                                  input_shape=input_shape, **kwargs)
        feats = base_model.layers[-3]

    elif net_name in list(source_module.keys()):
        base_model = net_name(weights='imagenet', include_top=False,
                              input_shape=input_shape, **kwargs)
        feats = base_model.layers[-1]

    else:
        raise Exception('Unknown model ' + net_name.__name__)

    gap = GlobalAveragePooling2D(name="final_gap")(feats.output)
    model = Model(inputs=base_model.input, outputs=gap)

    if plot: plot_model(base_model, show_shapes=True,
                        to_file='plots/{}_model.png'.format(net_name.__name__))
    return model, process_input[net_name]
示例#3
0
def get_weights(save_dir: Path, model_name: str, dtype: str) -> str:
    """Download pre-trained imagenet weights for model.

    Args:
        save_dir: Path to where checkpoint must be downloaded.
        model_name: Type of image classification model, must be one of
        ("GoogleNet", "InceptionV1", "MobileNet", "MobileNetV2", "NASNetMobile", "DenseNet121",
         "ResNet50", "Xception", "InceptionV3") in all lower case.
        dtype: Data type of the network.

    Returns: Path to checkpoint file.

    """
    if isinstance(save_dir, str):
        save_dir = Path(save_dir)
    g = tf.Graph()
    with tf.Session(graph=g) as sess:
        keras_backend.set_floatx(dtype)
        keras_backend.set_session(sess)
        if model_name == "mobilenet":
            MobileNet(weights='imagenet')
            saver = tf.train.Saver()
        elif model_name == "mobilenetv2":
            MobileNetV2(weights='imagenet')
            saver = tf.train.Saver()
        elif model_name == "nasnetmobile":
            NASNetMobile(weights='imagenet')
            saver = tf.train.Saver()
        elif model_name == "densenet121":
            DenseNet121(weights='imagenet')
            saver = tf.train.Saver()
        elif model_name == "resnet50":
            ResNet50(weights='imagenet')
            saver = tf.train.Saver()
        elif model_name == "xception":
            Xception(weights='imagenet')
            saver = tf.train.Saver()
        elif model_name == "inceptionv3":
            InceptionV3(weights='imagenet')
            saver = tf.train.Saver()
        elif model_name in ("googleNet", "inceptionv1"):
            tar_file = get_file(
                fname='inceptionv1_tar.gz',
                origin=
                'http://download.tensorflow.org/models/inception_v1_2016_08_28.tar.gz'
            )
            tar_file_reader = tarfile.open(tar_file)
            tar_file_reader.extractall(save_dir)
            if dtype == 'float16':
                saver = convert_ckpt_to_fp16(
                    Path(save_dir, 'inception_v1.ckpt').as_posix())
            sess.run(tf.global_variables_initializer())
        else:
            raise ValueError("""Requested model type = %s not one of
            ["GoogleNet", "InceptionV1", "MobileNet", "MobileNetV2", "NASNetMobile", "DenseNet121",
            "ResNet50", "Xception", "InceptionV3"].""" % model_name)
        save_dir.mkdir(parents=True, exist_ok=True)
        return saver.save(sess,
                          Path(save_dir, f"{model_name}.ckpt").as_posix())
def define_model():
    # load model
    model = NASNetMobile(include_top=False, input_shape=(224, 224, 3))
    # mark loaded layers as not trainable
    for layer in model.layers:
        layer.trainable = False
    # add new classifier layers
    flat1 = Flatten()(model.layers[-1].output)
    class1 = Dense(128, activation='relu',
                   kernel_initializer='he_uniform')(flat1)
    output = Dense(5, activation='softmax')(class1)
    # define new model
    model = Model(inputs=model.inputs, outputs=output)
    # compile model
    opt = SGD(lr=0.001, momentum=0.9)
    model.compile(optimizer=opt,
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])
    return model
示例#5
0
def define_classifier_architecture(architecture_name,
                                   image_size,
                                   weights,
                                   classifier_kwargs=None):
    if architecture_name == 'MobileNet':
        model = MobileNetV2(input_shape=image_size,
                            include_top=False,
                            weights=weights,
                            **classifier_kwargs)
    elif architecture_name == 'VGG16':
        model = VGG16(input_shape=image_size,
                      include_top=False,
                      weights=weights,
                      **classifier_kwargs)
    elif architecture_name == 'VGG19':
        model = VGG19(input_shape=image_size,
                      include_top=False,
                      weights=weights,
                      **classifier_kwargs)
    elif architecture_name == 'NASNetMobile':
        model = NASNetMobile(input_shape=image_size,
                             include_top=False,
                             weights=weights,
                             **classifier_kwargs)
    elif architecture_name == 'NASNetLarge':
        model = NASNetLarge(input_shape=image_size,
                            include_top=False,
                            weights=weights,
                            **classifier_kwargs)
    elif architecture_name == 'InceptionV3':
        model = InceptionV3(input_shape=image_size,
                            include_top=False,
                            weights=weights,
                            **classifier_kwargs)
    elif architecture_name == 'InceptionResNetV2':
        model = InceptionResNetV2(input_shape=image_size,
                                  include_top=False,
                                  weights=weights,
                                  **classifier_kwargs)
    elif architecture_name == 'Resnet50':
        model = ResNet50(input_shape=image_size,
                         include_top=False,
                         weights=weights,
                         **classifier_kwargs)
    elif architecture_name == 'EfficientNetB0':
        model = EfficientNetB0(input_shape=image_size,
                               include_top=False,
                               weights=weights,
                               **classifier_kwargs)
    else:
        raise ValueError(
            f"Classifier '{architecture_name}' is wrong or not implemented.")

    return model
示例#6
0
def get_model(model_name):

    if model_name == 'VGG16':
        from tensorflow.keras.applications.vgg16 import VGG16
        from tensorflow.keras.applications.vgg16 import preprocess_input, decode_predictions
        model = VGG16(weights='imagenet')
    if model_name == 'VGG19':
        from tensorflow.keras.applications.vgg19 import VGG19
        from tensorflow.keras.applications.vgg19 import preprocess_input, decode_predictions
        model = VGG19(weights='imagenet')
    elif model_name == 'ResNet50':
        from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions
        from tensorflow.keras.applications.resnet50 import ResNet50
        model = ResNet50(weights='imagenet')
    elif model_name == 'InceptionV3':
        from tensorflow.keras.applications.inception_v3 import preprocess_input, decode_predictions
        from tensorflow.keras.applications.inception_v3 import InceptionV3
        model = InceptionV3(weights='imagenet')
    elif model_name == 'InceptionResNetV2':
        from tensorflow.keras.applications.inception_resnet_v2 import preprocess_input, decode_predictions
        from tensorflow.keras.applications.inception_resnet_v2 import InceptionResNetV2
        model = InceptionResNetV2(weights='imagenet')
    elif model_name == 'Xception':
        from tensorflow.keras.applications.xception import preprocess_input, decode_predictions
        from tensorflow.keras.applications.xception import Xception
        model = Xception(weights='imagenet')
    elif model_name == 'MobileNet':
        from tensorflow.keras.applications.mobilenet import preprocess_input, decode_predictions
        from tensorflow.keras.applications.mobilenet import MobileNet
        model = MobileNet(weights='imagenet')
    elif model_name == 'MobileNetV2':
        from tensorflow.keras.applications.mobilenetv2 import preprocess_input, decode_predictions
        from tensorflow.keras.applications.mobilenetv2 import MobileNetV2
        model = MobileNetV2(weights='imagenet')
    elif model_name == 'DenseNet':
        from tensorflow.keras.applications.densenet import preprocess_input, decode_predictions
        from tensorflow.keras.applications.densenet import DenseNet121
        model = DenseNet121(weights='imagenet')
    elif model_name == 'NASNet':
        from tensorflow.keras.applications.nasnet import preprocess_input, decode_predictions
        from tensorflow.keras.applications.nasnet import NASNetMobile
        model = NASNetMobile(weights='imagenet')
    elif model_name == 'EfficientNet':
        from efficientnet.tfkeras import EfficientNetB0
        from keras.applications.imagenet_utils import decode_predictions
        from efficientnet.tfkeras import preprocess_input
        model = EfficientNetB7(weights='imagenet')
    else:
        print("[INFO] No model selected")
        

    return model, preprocess_input, decode_predictions
示例#7
0
文件: models.py 项目: pvza85/fgvc7
def get_model_nasnet_mobile(num_class):
    base_model = NASNetMobile(weights='imagenet', include_top=False)
    x = base_model.output

    # custom top
    predictions = get_custom_top(x, num_class)

    model = Model(inputs=base_model.input, outputs=predictions)
    for layer in base_model.layers:
        layer.trainable = False
    model.compile(optimizer='rmsprop',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])

    return model
示例#8
0
 def create_model_nasnet(self):
     input_tensor = Input(shape=self.input_shape)
     base_model = NASNetMobile(include_top=False, input_tensor=input_tensor)
     x = base_model(input_tensor)
     out_1 = GlobalMaxPooling2D()(x)
     out_2 = GlobalAveragePooling2D()(x)
     out_3 = Flatten()(x)
     out = Concatenate(axis=-1)([out_1, out_2, out_3])
     out = Dropout(0.5)(out)
     out = Dense(self.output_shape, activation="sigmoid")(out)
     model = Model(input_tensor, out)
     model.compile(optimizer=Adam(self.learning_rate),
                   loss=binary_crossentropy,
                   metrics=['acc'])
     return model
示例#9
0
def get_nasnetmobile(classes=9,
                     input_shape=(224, 224, 3),
                     base_layer_trainable=False):
    from tensorflow.keras.applications.nasnet import NASNetMobile
    base_model = NASNetMobile(include_top=False, input_shape=input_shape)
    for layer in base_model.layers:
        layer.trainable = base_layer_trainable
    head_model = KL.GlobalMaxPool2D()(base_model.output)
    head_model = KL.Dense(1024,
                          activation='relu',
                          name='0000',
                          kernel_initializer='he_uniform')(head_model)
    head_model = KL.Dropout(0.5)(head_model)
    head_model = KL.Dense(1024,
                          activation='relu',
                          name='1111',
                          kernel_initializer='he_uniform')(head_model)
    head_model = KL.Dropout(0.5)(head_model)
    head_model = KL.Dense(classes, activation='softmax',
                          name='3333')(head_model)
    model = KM.Model(inputs=base_model.input, outputs=head_model)
    return model
class Prediction:
    def __init__(self):
        self.model = NASNetMobile(weights="imagenet")

    @staticmethod
    def load_image(image):
        # img = np.fromstring(image, np.uint8)
        # img = cv2.imdecode(img, cv2.IMREAD_COLOR)
        # img = cv2.resize(img, dsize=(224, 224), interpolation=cv2.INTER_CUBIC)
        img = Image.open(BytesIO(image))
        img = np.asarray(img.resize((224, 224)))
        img = np.expand_dims(img, 0)
        return img

    def predict(self, image):
        img = preprocess_input(image)
        preds = decode_predictions(self.model.predict(img), 10)[0]

        results = {}
        for pred in preds:
            results.update({pred[1]: f"{pred[2] * 100:.2f}%"})

        return results
 def __init__(self):
     self.model = NASNetMobile(weights="imagenet")
示例#12
0
    def create_model_nasnet(self, mode=None):
        """
            Creates NasNetMobile model.
            Arguments: 
            - mode - mode of architecture to be trained
                        f.e linear means that we use linear head,
                        non linear means that we use more dense layers with relu activation 
                        and meta means that we build model that includes both metadata and image data.
            Returns:
            - Model - Keras model that is ready to be fit.
        """
        if mode == 'meta':
            input_tensor = Input(shape=self.input_shape[0], name='inp1')
            input_meta = Input(shape=self.input_shape[1], name='inp2')
        else:
            input_tensor = Input(shape=self.input_shape)
        base_model = NASNetMobile(include_top=False, input_tensor=input_tensor)
        x = base_model(input_tensor)
        if mode == 'linear':
            x = GlobalAveragePooling2D()(x)
            x = Dense(2048, activation='linear')(x)
            x = Dense(self.output_shape, activation='sigmoid')(x)
            model = Model(input_tensor, x)
            model.compile(optimizer=self.optimizer(self.learning_rate),
                          loss=self.loss,
                          metrics=self.metric)
            model.summary()
            return model

        elif mode == 'non_linear':
            out1 = AdaptiveMaxPooling2D((2, 2))(x)
            out2 = AdaptiveAveragePooling2D((2, 2))(x)
            out = Concatenate(axis=-1)([out1, out2])
            out = Flatten()(out)
            out = Dense(2048, activation='relu')(out)
            out = Dropout(0.4)(out)
            out = Dense(1024, activation='relu')(out)
            out = Dropout(0.3)(out)
            out = Dense(512, activation='relu')(out)
            out = Dropout(0.2)(out)
            out = Dense(256, activation='relu')(out)
            out = Dropout(0.1)(out)
            out = Dense(self.output_shape, activation='sigmoid')(out)
            model = Model(input_tensor, out)
            model.compile(optimizer=self.optimizer(self.learning_rate),
                          loss=self.loss,
                          metrics=self.metric)
            model.summary()
            return model

        elif mode == 'meta':
            x = GlobalAveragePooling2D()(x)
            x = Dense(2048, activation='linear')(x)
            x = BatchNormalization()(x)
            x1 = Dense(128)(input_meta)
            x1 = LeakyReLU()(x1)
            x1 = BatchNormalization()(x1)
            concat = Concatenate()([x, x1])
            x = Dense(1000, activation='relu')(x)
            x = BatchNormalization()(x)
            x = Dense(300, activation='relu')(x)
            x = BatchNormalization()(x)
            x = Dense(80, activation='relu')(x)
            x1 = Dense(60, activation='linear')(x)
            x1 = BatchNormalization()(x1)
            x1 = Dense(20, activation='linear')(x1)
            x1 = BatchNormalization()(x1)
            concat = Dense(1300, activation='relu')(concat)
            concat = BatchNormalization()(concat)
            concat = Dense(400, activation='relu')(concat)
            concat = BatchNormalization()(concat)
            concat = Dense(70, activation='relu')(concat)
            concat_layer = Concatenate()([x, x1, concat])
            last_head = Dense(20, activation='relu')(concat_layer)
            last_head = BatchNormalization()(last_head)
            output = Dense(1, activation='sigmoid')(last_head)
            model = Model([input_tensor, input_meta], output)
            model.compile(optimizer=self.optimizer(self.learning_rate),
                          loss=self.loss,
                          metrics=self.metric)
            model.summary()
            return model
示例#13
0
                                   weights='imagenet',
                                   include_top=False)
    architecture_name = "InceptionResNetV2"
elif architecture == 2:
    base_model = DenseNet121(input_shape=(img_height, img_width, 3),
                             weights='imagenet',
                             include_top=False)
    architecture_name = "DenseNet121"
elif architecture == 3:
    base_model = ResNet50(input_shape=(img_height, img_width, 3),
                          weights='imagenet',
                          include_top=False)
    architecture_name = "ResNet50"
elif architecture == 4:
    base_model = NASNetMobile(input_shape=(img_height, img_width, 3),
                              weights='imagenet',
                              include_top=False)
    architecture_name = "NASNetMobile"
elif architecture == 5:
    base_model = MobileNet(input_shape=(img_height, img_width, 3),
                           weights='imagenet',
                           include_top=False)
    architecture_name = "MobileNet"
elif architecture == 6:
    base_model = InceptionV3(input_shape=(img_height, img_width, 3),
                             weights='imagenet',
                             include_top=False)
    architecture_name = "InceptionV3"
else:
    print("Wrong Architecture Input")
x = base_model.output
示例#14
0
  elif args.net == 'xception':
    base_model = Xception(input_shape=(dim, dim, 3), weights='imagenet', include_top=False)
  elif args.net == 'resnet_50':
    base_model = ResNet50(input_shape=(dim, dim, 3), weights='imagenet', include_top=False)
  elif args.net == 'densenet_121':
    base_model = DenseNet121(input_shape=(dim, dim, 3), weights='imagenet', include_top=False)
  elif args.net == 'densenet_169':
    base_model = DenseNet169(input_shape=(dim, dim, 3), weights='imagenet', include_top=False)
  elif args.net == 'densenet_201':
    base_model = DenseNet201(input_shape=(dim, dim, 3), weights='imagenet', include_top=False)
  elif args.net == 'mobilenet_v2':
    base_model = MobileNetV2(input_shape=(dim, dim, 3), weights='imagenet', include_top=False)
  elif args.net == 'nasnetlarge':
    base_model = NASNetLarge(input_shape=(dim, dim, 3), weights='imagenet', include_top=False)
  elif args.net == 'nasnetmobile':
    base_model = NASNetMobile(input_shape=(dim, dim, 3), weights='imagenet', include_top=False)
  elif args.net == 'inceptionresnet_v2':
    base_model = InceptionResNetV2(input_shape=(dim, dim, 3), weights='imagenet', include_top=False)
  else:
    print('Not supported network type')
    sys.exit()

  x = base_model.output
  x = GlobalAveragePooling2D()(x)
  x = Dropout(rate=args.dropout0)(x)
  x = Dense(args.dense1, use_bias=False, kernel_regularizer=l2(args.l21))(x)
  if args.bn1:
    x = BatchNormalization()(x)
  x = Activation('relu')(x)
  x = Dropout(rate=args.dropout1)(x)
  if args.dense_layers >= 2:
示例#15
0
    def get_base_model(self, name='vgg16'):
        print('using model : ', name)
        if name == 'mobilenet_v2':
            from tensorflow.keras.applications.mobilenet_v2 import MobileNetV2
            base_model = MobileNetV2(input_shape=(self.IMAGE_SIZE,
                                                  self.IMAGE_SIZE, 3),
                                     include_top=False,
                                     weights='imagenet')
        elif name == 'mobilenet':
            from tensorflow.keras.applications.mobilenet import MobileNet
            base_model = MobileNet(input_shape=(self.IMAGE_SIZE,
                                                self.IMAGE_SIZE, 3),
                                   include_top=False,
                                   weights='imagenet')
        elif name == 'densenet121':
            from tensorflow.keras.applications.densenet import DenseNet121
            base_model = DenseNet121(input_shape=(self.IMAGE_SIZE,
                                                  self.IMAGE_SIZE, 3),
                                     include_top=False,
                                     weights='imagenet')
        elif name == 'densenet169':
            from tensorflow.keras.applications.densenet import DenseNet169
            base_model = DenseNet169(input_shape=(self.IMAGE_SIZE,
                                                  self.IMAGE_SIZE, 3),
                                     include_top=False,
                                     weights='imagenet')
        elif name == 'densenet201':
            from tensorflow.keras.applications.densenet import DenseNet201
            base_model = DenseNet201(input_shape=(self.IMAGE_SIZE,
                                                  self.IMAGE_SIZE, 3),
                                     include_top=False,
                                     weights='imagenet')
        elif name == 'inception_resnet_v2':
            from tensorflow.keras.applications.inception_resnet_v2 import InceptionResNetV2
            base_model = InceptionResNetV2(input_shape=(self.IMAGE_SIZE,
                                                        self.IMAGE_SIZE, 3),
                                           include_top=False,
                                           weights='imagenet')
        elif name == 'inception_v3':
            from tensorflow.keras.applications.inception_v3 import InceptionV3
            base_model = InceptionV3(input_shape=(self.IMAGE_SIZE,
                                                  self.IMAGE_SIZE, 3),
                                     include_top=False,
                                     weights='imagenet')
        elif name == 'nasnet_large':
            from tensorflow.keras.applications.nasnet import NASNetLarge
            base_model = NASNetLarge(input_shape=(self.IMAGE_SIZE,
                                                  self.IMAGE_SIZE, 3),
                                     include_top=False,
                                     weights='imagenet')
        elif name == 'nasnet_mobile':
            from tensorflow.keras.applications.nasnet import NASNetMobile
            base_model = NASNetMobile(input_shape=(self.IMAGE_SIZE,
                                                   self.IMAGE_SIZE, 3),
                                      include_top=False,
                                      weights='imagenet')
        elif name == 'resnet50':
            from tensorflow.keras.applications.resnet50 import ResNet50
            base_model = ResNet50(input_shape=(self.IMAGE_SIZE,
                                               self.IMAGE_SIZE, 3),
                                  include_top=False,
                                  weights='imagenet')
        elif name == 'xception':
            from tensorflow.keras.applications.xception import Xception
            base_model = Xception(input_shape=(self.IMAGE_SIZE,
                                               self.IMAGE_SIZE, 3),
                                  include_top=False,
                                  weights='imagenet')
        elif name == 'vgg19':
            from tensorflow.keras.applications.vgg19 import VGG19
            base_model = VGG19(input_shape=(self.IMAGE_SIZE, self.IMAGE_SIZE,
                                            3),
                               include_top=False,
                               weights='imagenet')
        else:
            from tensorflow.keras.applications.vgg16 import VGG16
            # 采用VGG16为基本模型,include_top为False,表示FC层是可自定义的,抛弃模型中的FC层;该模型会在~/.keras/models下载基本模型
            base_model = VGG16(input_shape=(self.IMAGE_SIZE, self.IMAGE_SIZE,
                                            3),
                               include_top=False,
                               weights='imagenet')

        # self.preprocess_input = preprocess_input
        return base_model
示例#16
0
 def download_for_url(self, path: str, **kwargs):
     """
     Download the file at the given URL
     :param path:  the path to download
     :param kwargs:  various kwargs for customizing the underlying behavior of
     the model download and setup
     :return: the absolute path to the model
     """
     path_split = path.split('/')
     type = path_split[0]
     weights_file = path_split[1]
     include_top = 'no_top' in weights_file
     if type == 'vgg19':
         ret = VGG19(include_top=include_top, **kwargs)
     elif type == 'vgg16':
         ret = VGG16(include_top=include_top, **kwargs)
     elif type == 'resnet50':
         ret = ResNet50(include_top=include_top, **kwargs)
     elif type == 'resnet101':
         ret = ResNet101(include_top=include_top, **kwargs)
     elif type == 'resnet152':
         ret = ResNet152(include_top=include_top, **kwargs)
     elif type == 'resnet50v2':
         ret = ResNet50V2(include_top=include_top, **kwargs)
     elif type == 'resnet101v2':
         ret = ResNet101V2(include_top=include_top, **kwargs)
     elif type == 'resnet152v2':
         ret = ResNet152V2(include_top=include_top, **kwargs)
     elif type == 'densenet121':
         ret = DenseNet121(include_top=include_top)
     elif type == 'densenet169':
         ret = DenseNet169(include_top=include_top, **kwargs)
     elif type == 'densenet201':
         ret = DenseNet201(include_top=include_top, **kwargs)
     elif type == 'inceptionresnetv2':
         ret = InceptionResNetV2(include_top=include_top, **kwargs)
     elif type == 'efficientnetb0':
         ret = EfficientNetB0(include_top=include_top, **kwargs)
     elif type == 'efficientnetb1':
         ret = EfficientNetB1(include_top=include_top, **kwargs)
     elif type == 'efficientnetb2':
         ret = EfficientNetB2(include_top=include_top, **kwargs)
     elif type == 'efficientnetb3':
         ret = EfficientNetB3(include_top=include_top, **kwargs)
     elif type == 'efficientnetb4':
         ret = EfficientNetB4(include_top=include_top, **kwargs)
     elif type == 'efficientnetb5':
         ret = EfficientNetB5(include_top=include_top, **kwargs)
     elif type == 'efficientnetb6':
         ret = EfficientNetB6(include_top=include_top, **kwargs)
     elif type == 'efficientnetb7':
         efficient_net = EfficientNetB7(include_top=include_top, **kwargs)
     elif type == 'mobilenet':
         ret = MobileNet(include_top=include_top, **kwargs)
     elif type == 'mobilenetv2':
         ret = MobileNetV2(include_top=include_top)
     #  MobileNetV3() missing 2 required positional arguments: 'stack_fn' and 'last_point_ch'
     #elif type == 'mobilenetv3':
     #    mobile_net = MobileNetV3(include_top=include_top, **kwargs)
     elif type == 'inceptionv3':
         ret = InceptionV3(include_top=include_top, **kwargs)
     elif type == 'nasnet':
         ret = NASNetLarge(include_top=include_top, **kwargs)
     elif type == 'nasnet_mobile':
         ret = NASNetMobile(include_top=include_top, **kwargs)
     elif type == 'xception':
         ret = Xception(include_top=include_top, **kwargs)
     model_path = os.path.join(keras_path, weights_file)
     ret.save(model_path)
     return model_path