示例#1
0
def predict_image():
    #file = request.files['image']
    #filename = os.path.join('selected', file.filename)

    #file.save(filename)

    # Load the VGG19 model
    # https://keras.io/applications/#VGG19
    model = VGG19(include_top=True, weights='imagenet')

    # Define default image size for VGG19
    image_size = (224, 224)

    # initialize the response dictionary that will be returned
    message = request.get_json(force=True)
    encoded = message['image']
    decoded = base64.b64decode(encoded)
    img = Image.open(io.BytesIO(decoded))

    # if the image mode is not RGB, convert it
    if img.mode != "RGB":
        img = img.convert("RGB")

    # resize the input image and preprocess it
    img = img.resize(image_size)

    # Preprocess image for model prediction
    # This step handles scaling and normalization for VGG19
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)

    # Make predictions
    predictions = model.predict(x)
    prediction = decode_predictions(predictions, top=1)
    print('Predicted:', decode_predictions(predictions, top=3))

    response = {
        'predictions': {
            'label': np.array(prediction[0][0][1]).tolist(),
            'probability': np.array(prediction[0][0][2]).tolist()
        }
    }

    print(response)

    # return the response dictionary as a JSON response
    return jsonify(response)
示例#2
0
def get_prediction_list(original_image: np.ndarray,
                        model) -> List[PredictedObject]:
    """Determines ten most probable image classes.

    Determines 10 most probable classes of image. This info is afterwards processed
    into user-friendly class PredictedObject (more precisely into list with objects
    of this type).

    Args:
        original_image (np.ndarray): Figure - tensor, which we try to classify.
        model (tf.keras.engine.functional.Functional): used ML model.

    Returns:
        List[PredictedObject]: List of PredictedObject objects.
    """
    prediction = model.predict(original_image)
    ten_best_classes = decode_predictions(prediction, top=10)[0]
    predictions_list = []
    for order_number_minus_one, element in enumerate(ten_best_classes):
        class_name = element[1]
        probability = round(100 * element[2], 2)
        class_index = _get_class_index(prediction, order_number_minus_one)
        predictions_list.append(
            PredictedObject(order_number_minus_one + 1, class_name,
                            probability, class_index))
    return predictions_list
示例#3
0
def predict(image_path):
    """Use VGG19 to label image"""
    img = image.load_img(image_path, target_size=image_size)
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    predictions = model.predict(x)
    plt.imshow(img)
    print('Predicted:', decode_predictions(predictions, top=3))
示例#4
0
def predict(image_path):
    """Use VGG19 to label image"""
    pred = []
    acc = []
    model = VGG19(include_top=True, weights='imagenet')
    img = image.load_img(urllib.request.urlopen(image_path),
                         target_size=(224, 224))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    predictions = model.predict(x)
    plt.imshow(img)

    for i in range(3):
        pred.append(decode_predictions(predictions, top=3)[0][i][1])
        acc.append(decode_predictions(predictions, top=3)[0][i][2])

    pred_accuracy = {'Predicted': pred, 'Accuracy': acc}

    return pred_accuracy
示例#5
0
def PredictTop5_VGG19(image_path):
    model = VGG19()
    img = image.load_img(image_path, target_size=(224, 224))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    preds = model.predict(x)
    labels = decode_predictions(preds, top=5)
    K.clear_session()
    labels = np.array(labels)
    labels = np.squeeze(labels)
    labels = labels[:, 1:3]
    labels = dict(labels)
    print(labels)
    return labels
def trainer(things):
    filename = things
    # Load the VGG19 model
    # https://keras.io/applications/#VGG19
    model = VGG19(include_top=True, weights='imagenet')

    # Define default image size for VGG19
    image_size = (224, 224)

    # Load the image and resize to default image size
    image_path = os.path.join("static", "images", filename)
    img = image.load_img(image_path, target_size=image_size)
    plt.imshow(img)

    # Preprocess image for model prediction
    # This step handles scaling and normalization for VGG19
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)

    # Make predictions
    predictions = model.predict(x)
    predictionsforshow = decode_predictions(predictions, top=3)
    #print('Predicted:', decode_predictions(predictions, top=3))
    plt.imshow(img)

    return (predictionsforshow)
    # Refactor above steps into reusable function


# def predict(image_path):
#     """Use VGG19 to label image"""
#     img = image.load_img(image_path, target_size=image_size)
#     x = image.img_to_array(img)
#     x = np.expand_dims(x, axis=0)
#     x = preprocess_input(x)
#     predictions = model.predict(x)
#     plt.imshow(img)
#     print('Predicted:', decode_predictions(predictions, top=3))

# Make predictions on the dog photo
#image_path = os.path.join("..", "images", "dog.jpeg")
#predict(image_path)
def main(myblob: func.InputStream):
    logging.info(f"Python blob trigger function processed blob \n"
                 f"Name: {myblob.name}\n"
                 f"Blob Size: {myblob.length} bytes")

    # Constants
    img_width, img_height = 224, 224

    # Load image from blob
    bytes_image = myblob.read()
    raw_image = load_img(io.BytesIO(bytes_image),
                         target_size=(img_width, img_height))

    # Reshape data for the model
    image = img_to_array(raw_image)
    image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))

    # Prepare the image for the VGG model
    image = preprocess_input(image)

    # Load base model
    if K.image_data_format() == 'channels_first':
        input_shape = (3, img_width, img_height)
    else:
        input_shape = (img_width, img_height, 3)

    test_model = VGG19(input_shape=input_shape, weights='imagenet')

    # Perform image classification
    prediction = test_model.predict(image)

    # Convert the probabilities to class labels
    label = decode_predictions(prediction)
    # Retrieve the most likely result, e.g. highest probability
    label = label[0][0]

    logging.info(f"PREDICTION: {label[1]} | {label[2]*100}%")
示例#8
0
    def get_predictions(self, in_img, network_name, top=3):
        # network model selection
        model = None
        size = (224, 224)
        int_model = False
        if network_name == 'VGG19':
            if self.MODEL_VGG19 is None:
                from tensorflow.keras.applications.vgg19 import VGG19
                self.MODEL_VGG19 = VGG19(weights='imagenet')
            model = self.MODEL_VGG19
            int_model = True
            from tensorflow.keras.applications.vgg19 import decode_predictions

        elif network_name == 'DenseNet201':
            if self.MODEL_DENSENET201 is None:
                from tensorflow.python.keras.applications.densenet import DenseNet201
                self.MODEL_DENSENET201 = DenseNet201(weights='imagenet')
            model = self.MODEL_DENSENET201
            from tensorflow.keras.applications.densenet import decode_predictions

        elif network_name == 'MobileNetV2':
            if self.MODEL_MOBILENET is None:
                from tensorflow.keras.applications.mobilenet import MobileNet  # (244,244)
                self.MODEL_MOBILENET = MobileNet(weights='imagenet')
            model = self.MODEL_MOBILENET
            from tensorflow.keras.applications.mobilenet import decode_predictions

        elif network_name == 'InceptionV3':
            if self.MODEL_INCEPTIONV3 is None:
                from tensorflow.keras.applications.inception_v3 import InceptionV3  # (299,299)
                self.MODEL_INCEPTIONV3 = InceptionV3(weights='imagenet')
            model = self.MODEL_INCEPTIONV3
            size = (299, 299)
            from tensorflow.keras.applications.inception_v3 import decode_predictions

        elif network_name == 'ResNet50':
            if self.MODEL_RESNET50 is None:
                from tensorflow.python.keras.applications.resnet import ResNet50  # (244,244)
                self.MODEL_RESNET50 = ResNet50(weights='imagenet')
            model = self.MODEL_RESNET50
            int_model = True
            from tensorflow.keras.applications.resnet import decode_predictions

        else:
            print("no valid model selected")
            return

        # if input is a numpy image, convert it to a cv image
        if (isinstance(in_img, numpy.ndarray)):
            in_img = _to_cv_image(in_img)

        img = cv2.resize(in_img, dsize=size, interpolation=cv2.INTER_CUBIC)
        img = _cv_to_array(img)
        if (int_model):
            img = img * 255
        img = numpy.expand_dims(img, axis=0)
        # predict model and return top predictions
        features = model.predict(img)
        predictions = []
        for p in decode_predictions(features, top=top)[0]:
            predictions.append([p[0], p[1], float(p[2])])

        # get the indexes of the top predictions
        class_codes = numpy.flip(numpy.argsort(features[0]))[:top]

        return (predictions, class_codes)  # ottiene nome della classe predetta
示例#9
0
### This is the basic image classifier code using transfer learning in VGG19###
from tensorflow.keras.applications.vgg19 import VGG19, decode_predictions
from tensorflow.keras.applications.imagenet_utils import preprocess_input
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import load_model
import numpy as np


def test(img, model):
    img = image.load_img(img, target_size=(224, 224))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)

    preds = model.predict(x)
    return preds


if __name__ == '__main__':
    #model = VGG19(weights='imagenet')                               # Use this if you don't have model not in your local
    model = load_model('pretrained weights/vgg19.h5'
                       )  # use this if you have model in your local
    test_image = 'images/2464903-1366x768.jpg'  # pass the image you want to predict
    prediction = test(test_image, model)
    label = decode_predictions(prediction)
    label = label[0][0]
    print("Predicted object is " + str(label[1]) + " and it's score is " +
          str(label[2] * 100))
示例#10
0
image_path =IMAGES_DIR / 'rose.jpg'

print (image_path)
# read image in RGB format
image = imageio.imread(str(image_path))
# read image in BGR format
# image = cv2.imread(str(image_path))
print(image.shape)
image = vision.resize(image, 224, 224)
batch = expand_to_batch(image)
#batch = preprocess_input(batch)
batch = preprocess_caffe(batch, color_format="rgb")

a_model  = vgg.model_vgg19(weights="imagenet")
b_model = VGG19()
#print(model.summary())

a_y = a_model.predict(batch)
b_y = b_model.predict(batch)


a_label = decode_predictions(a_y)
b_label = decode_predictions(b_y)

a_label = a_label[0][0]
b_label = b_label[0][0]
# print the classification
print('%s (%.2f%%)' % (a_label[1], a_label[2]*100))
print('%s (%.2f%%)' % (b_label[1], b_label[2]*100))

示例#11
0
    img=tf.io.read_file(img_file)
    img=tf.image.decode_image(img,channels=3)
    img=tf.image.convert_image_dtype(img,tf.float32)
    shape=tf.cast(tf.shape(img)[:-1],tf.float32)
    scale=max_img_size/max(shape)
    new_shape=tf.cast(shape*scale,tf.int32)
    img=tf.image.resize(img,new_shape)
    return img[tf.newaxis,:]
def tensor2img(tensor):
    if np.ndim(tensor)>int(3):
        assert tensor.shape[0]==1; tensor=tensor[0]
    pl.figure(figsize=(3,3)); pl.imshow(tensor)
    pl.tight_layout(); pl.show()
for f in img_files:
    input_file=urllib.request.urlopen(img_path+f)
    output_file=open(f,'wb')
    output_file.write(input_file.read())
    output_file.close(); input_file.close()

for i in range(len(img_files)):
    content_img=load_img(img_files[i])
    x=vgg19.preprocess_input(content_img*255)
    prediction_probabilities=mvgg19(x)
    predict_top5=vgg19.decode_predictions(
        prediction_probabilities.numpy())[0]
    sp.pretty_print('example #%d'%(i+1))
    display(pd.DataFrame(
        [[class_name,prob] 
         for (number,class_name,prob) in predict_top5],
        columns=['class name','prob']))
    tensor2img(content_img)
示例#12
0
num_classes = 1

uploaded_file = st.file_uploader("Choose Picture", type="jpg")
if uploaded_file is not None:
    image = Image.open(uploaded_file)
    st.image(image, caption='Uploaded Picture', use_column_width=True)

    # predictions
    image = preprocess(image)

    #load VGG19 model
    with st.spinner('Loading VGG19 Model'):
        model = VGG19()
    with st.spinner('Predicting Object'):
        i_pred = model.predict(image)
        label = decode_predictions(i_pred, top=num_classes)

    with st.spinner('Confidence'):
        # process output
        confidence = round(label[0][0][2], 3)
        st.write(confidence)
        bar = st.progress(0)
        prog_sec = 1.0
        for b_progress in range(100):
            time.sleep(prog_sec / 100.0)
            bar.progress(int((b_progress + 1) * confidence))

        confidence = round(confidence * 100, 2)
        output = "# " + label[0][0][1] + " with " + str(
            confidence) + " % confidence"
        st.write(output)
示例#13
0
image_size = (224, 224)

# Load the image and resize to default image size
image_path = os.path.join("..", "images", "animal1.jpg")
img = image.load_img(image_path, target_size=image_size)
plt.imshow(img)

# Preprocess image for model prediction
# This step handles scaling and normalization for VGG19
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

# Make predictions
predictions = model.predict(x)
print('Predicted:', decode_predictions(predictions, top=3))
plt.imshow(img)


# Refactor above steps into reusable function
def predict(image_path):
    """Use VGG19 to label image"""
    img = image.load_img(image_path, target_size=image_size)
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    predictions = model.predict(x)
    plt.imshow(img)
    print('Predicted:', decode_predictions(predictions, top=3))

from tensorflow.keras.applications.vgg19 import VGG19
from tensorflow.keras.utils import plot_model
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.vgg19 import preprocess_input, decode_predictions
from tensorflow.keras.models import Model
import numpy as np

base_model = VGG19(weights='imagenet', include_top=True)
#model = Model(inputs=base_model.input, outputs=base_model.get_layer('block4_pool').output)

#print(model.summary())
#plot_model(model, to_file='vgg.png')

img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

block4_pool_features = base_model.predict(x)

#print('Predicted:', decode_predictions(block4_pool_features, top=5)[0])

#print out the result of the prediction
# convert the probabilities to class labels
label = decode_predictions(block4_pool_features)
# retrieve the most likely result, e.g. highest probability
label = label[0][0]
# print the classification
print('%s (%.2f%%)' % (label[1], label[2] * 100))
示例#15
0
    def set_model(self, model_name, top_n=5):
        if model_name == 'densenet':
            self.model = densenet.DenseNet121(include_top=True,
                                              weights='imagenet',
                                              input_tensor=None,
                                              input_shape=None,
                                              pooling=None,
                                              classes=1000)
            self.target_size = (224, 224)
            self.decoder = lambda x: densenet.decode_predictions(x, top=top_n)
            self.ref = """
                <ul>
                <li><a href='https://arxiv.org/abs/1608.06993' target='_blank'>
                Densely Connected Convolutional Networks</a> (CVPR 2017 Best Paper Award)</li>
                </ul>
                """

        elif model_name == 'inception_resnet_v2':
            self.model = inception_resnet_v2.InceptionResNetV2(
                include_top=True,
                weights='imagenet',
                input_tensor=None,
                input_shape=None,
                pooling=None,
                classes=1000)
            self.target_size = (299, 299)
            self.decoder = lambda x: inception_resnet_v2.decode_predictions(
                x, top=top_n)
            self.ref = """
                <ul>
                <li><a href='https://arxiv.org/abs/1602.07261' target='_blank'>
                Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning</a></li>
                </ul>
                """

        elif model_name == 'inception_v3':
            self.model = inception_v3.InceptionV3(include_top=True,
                                                  weights='imagenet',
                                                  input_tensor=None,
                                                  input_shape=None,
                                                  pooling=None,
                                                  classes=1000)
            self.target_size = (299, 299)
            self.decoder = lambda x: inception_v3.decode_predictions(x,
                                                                     top=top_n)
            self.ref = """<ul>
                <li><a href='https://arxiv.org/abs/1512.00567' target='_blank'>
                Rethinking the Inception Architecture for Computer Vision</a></li>
                </ul>
                """

        elif model_name == 'mobilenet':
            self.model = mobilenet.MobileNet(input_shape=None,
                                             alpha=1.0,
                                             depth_multiplier=1,
                                             dropout=1e-3,
                                             include_top=True,
                                             weights='imagenet',
                                             input_tensor=None,
                                             pooling=None,
                                             classes=1000)
            self.target_size = (224, 224)
            self.decoder = lambda x: mobilenet.decode_predictions(x, top=top_n)
            self.ref = """<ul>
                <li><a href='https://arxiv.org/abs/1704.04861' target='_blank'>
                MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications</a></li>
                </ul>
                """

        elif model_name == 'mobilenet_v2':
            self.model = mobilenet_v2.MobileNetV2(input_shape=None,
                                                  alpha=1.0,
                                                  include_top=True,
                                                  weights='imagenet',
                                                  input_tensor=None,
                                                  pooling=None,
                                                  classes=1000)
            self.target_size = (224, 224)
            self.decoder = lambda x: mobilenet_v2.decode_predictions(x,
                                                                     top=top_n)
            self.ref = """<ul>
                <li><a href='https://arxiv.org/abs/1801.04381' target='_blank'>
                MobileNetV2: Inverted Residuals and Linear Bottlenecks</a></li>
                </ul>
                """

        elif model_name == 'nasnet':
            self.model = nasnet.NASNetLarge(input_shape=None,
                                            include_top=True,
                                            weights='imagenet',
                                            input_tensor=None,
                                            pooling=None,
                                            classes=1000)
            self.target_size = (224, 224)
            self.decoder = lambda x: nasnet.decode_predictions(x, top=top_n)
            self.ref = """<ul>
                <li><a href='https://arxiv.org/abs/1707.07012' target='_blank'>
                Learning Transferable Architectures for Scalable Image Recognition</a></li>
                </ul>
                """

        elif model_name == 'resnet50':
            self.model = resnet50.ResNet50(include_top=True,
                                           weights='imagenet',
                                           input_tensor=None,
                                           input_shape=None,
                                           pooling=None,
                                           classes=1000)
            self.target_size = (224, 224)
            self.decoder = lambda x: resnet50.decode_predictions(x, top=top_n)
            self.ref = """<ul>
                <li>ResNet : 
                <a href='https://arxiv.org/abs/1512.03385' target='_blank'>Deep Residual Learning for Image Recognition
                </a></li>
                </ul>
                """

        elif model_name == 'vgg16':
            self.model = vgg16.VGG16(include_top=True,
                                     weights='imagenet',
                                     input_tensor=None,
                                     input_shape=None,
                                     pooling=None,
                                     classes=1000)
            self.target_size = (224, 224)
            self.decoder = lambda x: vgg16.decode_predictions(x, top=top_n)
            self.ref = """<ul>
            <li><a href='https://arxiv.org/abs/1409.1556' target='_blank'>
            Very Deep Convolutional Networks for Large-Scale Image Recognition</a></li>
            </ul>"""

        elif model_name == 'vgg19':
            self.model = vgg19.VGG19(include_top=True,
                                     weights='imagenet',
                                     input_tensor=None,
                                     input_shape=None,
                                     pooling=None,
                                     classes=1000)
            self.target_size = (224, 224)
            self.decoder = lambda x: vgg19.decode_predictions(x, top=top_n)
            self.ref = """<ul>
            <li><a href='https://arxiv.org/abs/1409.1556' target='_blank'>Very Deep Convolutional Networks for Large-Scale Image Recognition</a></li>
            </ul>"""

        elif model_name == 'xception':
            self.model = xception.Xception(include_top=True,
                                           weights='imagenet',
                                           input_tensor=None,
                                           input_shape=None,
                                           pooling=None,
                                           classes=1000)
            self.target_size = (299, 299)
            self.decoder = lambda x: xception.decode_predictions(x, top=top_n)
            self.ref = """<ul>
            <li><a href='https://arxiv.org/abs/1610.02357' target='_blank'>Xception: Deep Learning with Depthwise Separable Convolutions</a></li>
            </ul>"""

        else:
            logger.ERROR('There has no model name !!!')