示例#1
0
    def build(self, input_shape):
        if isinstance(input_shape, list):
            input_shape_high, input_shape_low = input_shape
        else:
            input_shape_high, input_shape_low = input_shape, None
        if self.data_format == 'channels_first':
            channel_axis, rows_axis, cols_axis = 1, 2, 3
        else:
            rows_axis, cols_axis, channel_axis = 1, 2, 3
        if input_shape_high[channel_axis] is None:
            raise ValueError('The channel dimension of the higher spatial inputs '
                             'should be defined. Found `None`.')
        if input_shape_low is not None and input_shape_low[channel_axis] is None:
            raise ValueError('The channel dimension of the lower spatial inputs '
                             'should be defined. Found `None`.')
        if input_shape_high[rows_axis] is not None and input_shape_high[rows_axis] % self.octave != 0 or \
           input_shape_high[cols_axis] is not None and input_shape_high[cols_axis] % self.octave != 0:
            raise ValueError('The rows and columns of the higher spatial inputs should be divisible by the octave. '
                             'Found {} and {}.'.format(input_shape_high, self.octave))
        if input_shape_low is None:
            self.conv_low_to_high, self.conv_low_to_low = None, None

        if self.conv_high_to_high is not None:
            with K.name_scope(self.conv_high_to_high.name):
                self.conv_high_to_high.build(input_shape_high)
        if self.conv_low_to_high is not None:
            with K.name_scope(self.conv_low_to_high.name):
                self.conv_low_to_high.build(input_shape_low)
        if self.conv_high_to_low is not None:
            with K.name_scope(self.conv_high_to_low.name):
                self.conv_high_to_low.build(input_shape_high)
        if self.conv_low_to_low is not None:
            with K.name_scope(self.conv_low_to_low.name):
                self.conv_low_to_low.build(input_shape_low)
        super(OctaveConv2D, self).build(input_shape)
示例#2
0
    def build(self, input_shapes):
        """
        Build the weights for the layer
        Args:
            input_shapes (sequence of tuple): the shapes of all input tensors

        """
        vdim = input_shapes[0][2]
        edim = input_shapes[1][2]

        with kb.name_scope(self.name):
            with kb.name_scope("phi_v"):
                v_shapes = [[2 * vdim + edim, vdim]] * 2
                self.phi_v_weights = [
                    self.add_weight(
                        shape=i,
                        initializer=self.kernel_initializer,
                        name=f"weight_v_{j}",
                        regularizer=self.kernel_regularizer,
                        constraint=self.kernel_constraint,
                    ) for j, i in enumerate(v_shapes)
                ]
                if self.use_bias:
                    self.phi_v_biases = [
                        self.add_weight(
                            shape=(i[-1], ),
                            initializer=self.bias_initializer,
                            name=f"bias_v_{j}",
                            regularizer=self.bias_regularizer,
                            constraint=self.bias_constraint,
                        ) for j, i in enumerate(v_shapes)
                    ]
                else:
                    self.phi_v_biases = None
        self.built = True
示例#3
0
    def build(self, input_shape):
        if isinstance(input_shape, list):
            input_shape_high, input_shape_low = input_shape
        else:
            input_shape_high, input_shape_low = input_shape, None
        if input_shape_high[-1] is None:
            raise ValueError(
                'The channel dimension of the higher spatial inputs '
                'should be defined. Found `None`.')
        if input_shape_low is not None and input_shape_low[-1] is None:
            raise ValueError(
                'The channel dimension of the lower spatial inputs '
                'should be defined. Found `None`.')
        if input_shape_high[
                -2] is not None and input_shape_high[-2] % self.octave != 0:
            raise ValueError(
                'The length of the higher spatial inputs should be divisible by the octave. '
                'Found {} and {}.'.format(input_shape_high, self.octave))
        if input_shape_low is None:
            self.conv_low_to_high, self.conv_low_to_low = None, None

        if self.conv_high_to_high is not None:
            with K.name_scope(self.conv_high_to_high.name):
                self.conv_high_to_high.build(input_shape_high)
        if self.conv_low_to_high is not None:
            with K.name_scope(self.conv_low_to_high.name):
                self.conv_low_to_high.build(input_shape_low)
        if self.conv_high_to_low is not None:
            with K.name_scope(self.conv_high_to_low.name):
                self.conv_high_to_low.build(input_shape_high)
        if self.conv_low_to_low is not None:
            with K.name_scope(self.conv_low_to_low.name):
                self.conv_low_to_low.build(input_shape_low)
        super(OctaveConv1D, self).build(input_shape)
示例#4
0
    def _build_conv(self, input_shape, output_shape=[]):

        for i, kernel in enumerate(self.kernel_size):

            tmp_layer = []
            name_conv = 'conv1D_{}'.format(i + 1)
            with K.name_scope(name_conv):
                tmp_layer.append(
                    Conv1D(filters=self.nb_filters,
                           kernel_size=kernel,
                           strides=self.strides,
                           padding=self.padding,
                           use_bias=False,
                           activation=self.activation,
                           name=name_conv))
                tmp_layer[-1].build(input_shape)
                output_shape_conv = tmp_layer[-1].compute_output_shape(
                    input_shape)

            name_bn = 'batchNorm_{}'.format(i + 1)
            with K.name_scope(name_bn):
                tmp_layer.append(BatchNormalization(name=name_bn))
                tmp_layer[-1].build(output_shape_conv)

            self.conv_layers.append(tmp_layer)
            output_shape.append(
                tmp_layer[-1].compute_output_shape(output_shape_conv))
示例#5
0
    def build(self, input_shapes):
        vdim = input_shapes[0][2]
        edim = input_shapes[1][2]

        with kb.name_scope(self.name):
            with kb.name_scope('phi_v'):
                v_shapes = [[2 * vdim + edim, vdim]] * 2
                self.phi_v_weights = [
                    self.add_weight(shape=i,
                                    initializer=self.kernel_initializer,
                                    name='weight_v_%d' % j,
                                    regularizer=self.kernel_regularizer,
                                    constraint=self.kernel_constraint)
                    for j, i in enumerate(v_shapes)
                ]
                if self.use_bias:
                    self.phi_v_biases = [
                        self.add_weight(shape=(i[-1], ),
                                        initializer=self.bias_initializer,
                                        name='bias_v_%d' % j,
                                        regularizer=self.bias_regularizer,
                                        constraint=self.bias_constraint)
                        for j, i in enumerate(v_shapes)
                    ]
                else:
                    self.phi_v_biases = None
        self.built = True
示例#6
0
文件: tcn.py 项目: struemya/HeySnips
    def build(self, input_shape):

        with K.name_scope(
                self.name
        ):  # name scope used to make sure weights get unique names
            self.layers = []
            self.res_output_shape = input_shape
            for k in range(2):
                name = 'conv1D_{}'.format(k)
                with K.name_scope(
                        name
                ):  # name scope used to make sure weights get unique names
                    self._add_and_activate_layer(
                        MyConv1D(filters=self.nb_filters,
                                 kernel_size=self.kernel_size,
                                 dilation_rate=self.dilation_rate,
                                 padding=self.padding,
                                 name=name,
                                 kernel_initializer=self.kernel_initializer))

                with K.name_scope('norm_{}'.format(k)):
                    if self.use_batch_norm:
                        self._add_and_activate_layer(BatchNormalization())
                    elif self.use_layer_norm:
                        self._add_and_activate_layer(LayerNormalization())
                self._add_and_activate_layer(Activation('relu'))

            if self.nb_filters != input_shape[-1]:
                # 1x1 conv to match the shapes (channel dimension).
                name = 'matching_conv1D'
                with K.name_scope(name):
                    # make and build this layer separately because it directly uses input_shape
                    self.shape_match_conv = MyConv1D(
                        filters=self.nb_filters,
                        kernel_size=1,
                        padding='same',
                        name=name,
                        kernel_initializer=self.kernel_initializer)

            else:
                name = 'matching_identity'
                self.shape_match_conv = Lambda(lambda x: x, name=name)

            with K.name_scope(name):
                self.shape_match_conv.build(input_shape)
                self.res_output_shape = self.shape_match_conv.compute_output_shape(
                    input_shape)

            self.final_activation = Activation(self.activation)
            self.final_activation.build(
                self.res_output_shape)  # probably isn't necessary

            # this is done to force Keras to add the layers in the list to self._layers
            for layer in self.layers:
                self.__setattr__(layer.name, layer)
            self.__setattr__(self.shape_match_conv.name, self.shape_match_conv)
            self.__setattr__(self.final_activation.name, self.final_activation)

            super(ResidualBlock, self).build(
                input_shape)  # done to make sure self.built is set True
示例#7
0
def _adjust_block(p, ip, filters, weight_decay=5e-5, id=None):
    '''
    Adjusts the input `p` to match the shape of the `input`
    or situations where the output number of filters needs to
    be changed

    # Arguments:
        p: input tensor which needs to be modified
        ip: input tensor whose shape needs to be matched
        filters: number of output filters to be matched
        weight_decay: l2 regularization weight
        id: string id

    # Returns:
        an adjusted Keras tensor
    '''
    channel_dim = 1 if K.image_data_format() == 'channels_first' else -1
    img_dim = 2 if K.image_data_format() == 'channels_first' else -2

    with K.name_scope('adjust_block'):
        if p is None:
            p = ip

        elif p._keras_shape[img_dim] != ip._keras_shape[img_dim]:
            with K.name_scope('adjust_reduction_block_%s' % id):
                p = Activation('relu', name='adjust_relu_1_%s' % id)(p)

                p1 = AveragePooling2D((1, 1), strides=(2, 2), padding='valid',
                                      name='adjust_avg_pool_1_%s' % id)(p)
                p1 = Conv2D(filters // 2, (1, 1), padding='same', use_bias=False,
                            kernel_regularizer=l2(weight_decay),
                            name='adjust_conv_1_%s' % id,
                            kernel_initializer='he_normal')(p1)

                p2 = ZeroPadding2D(padding=((0, 1), (0, 1)))(p)
                p2 = Cropping2D(cropping=((1, 0), (1, 0)))(p2)
                p2 = AveragePooling2D((1, 1), strides=(2, 2), padding='valid',
                                      name='adjust_avg_pool_2_%s' % id)(p2)
                p2 = Conv2D(filters // 2, (1, 1), padding='same', use_bias=False,
                            kernel_regularizer=l2(weight_decay),
                            name='adjust_conv_2_%s' % id,
                            kernel_initializer='he_normal')(p2)

                p = concatenate([p1, p2], axis=channel_dim)
                p = BatchNormalization(axis=channel_dim, momentum=_BN_DECAY,
                                       epsilon=_BN_EPSILON,
                                       name='adjust_bn_%s' % id)(p)

        elif p._keras_shape[channel_dim] != filters:
            with K.name_scope('adjust_projection_block_%s' % id):
                p = Activation('relu')(p)
                p = Conv2D(filters, (1, 1), strides=(1, 1), padding='same',
                           name='adjust_conv_projection_%s' % id, use_bias=False,
                           kernel_regularizer=l2(weight_decay),
                           kernel_initializer='he_normal')(p)
                p = BatchNormalization(axis=channel_dim, momentum=_BN_DECAY,
                                       epsilon=_BN_EPSILON,
                                       name='adjust_bn_%s' % id)(p)
    return p
示例#8
0
    def make_model(self):

        with k.name_scope("SVM_features"):

            svm_features = Input(shape=(self.svm_dims, ), name="svm_features")
            svm_input = Dense(128, activation=None,
                              name="svm_dense")(svm_features)
            svm_input = LeakyReLU()(svm_input)

        with k.name_scope("CNN"):

            lstm_features = Input(shape=(None, self.input_shape, 1),
                                  name="lstm_features")
            # lstm_skip = Lambda(lambda t: t[:, 0:-1:2, :])(lstm_features)
            lstm_mask = Masking(mask_value=Config.MASKING_VALUE,
                                input_shape=(self.time_steps, self.input_shape,
                                             1))(lstm_features)  # [None, T, F]
            lstm_mask = Lambda(lambda t: t)(lstm_mask)

            conv1 = Conv2D(4, (3, 1), padding="same", name="conv1")(lstm_mask)
            conv1 = BatchNormalization()(conv1)
            conv1 = LeakyReLU()(conv1)
            conv1 = Dropout(rate=0.3)(conv1)
            conv1_pool = MaxPooling2D(pool_size=(1, 2),
                                      name="maxpooling1")(conv1)
            conv_reshape = Lambda(lambda t: tf.concat(tf.unstack(t, axis=-1),
                                                      axis=-1))(conv1_pool)
            print(conv_reshape)
            # conv_reshape = Reshape(target_shape = (-1, 16))(conv1_pool)

        with k.name_scope("LSTM"):

            conv_dense = Dense(16, activation=None,
                               name="conv_dense")(conv_reshape)
            conv_dense = LeakyReLU()(conv_dense)
            lstm_output = LSTM(Config.LSTM_UNITS,
                               return_sequences=True,
                               name="lstm_sequence")(conv_dense)
            lstm_output_last = LSTM(Config.LSTM_UNITS,
                                    return_sequences=False,
                                    name="lstm_last_output")(conv_dense)

        with k.name_scope("Concatenate"):
            x = concatenate([lstm_output_last, svm_input])
            x_dense = Dense(128, activation=None)(x)
            x_dense = LeakyReLU()(x_dense)
            # batchnorm1 = BatchNormalization()(x)
            # dropout1 = Dropout(rate = 0.3)(batchnorm1)
            dense_2 = Dense(128, activation=None)(x_dense)
            dense_2 = LeakyReLU()(dense_2)
            batchnorm2 = BatchNormalization()(dense_2)
            dropout = Dropout(rate=0.3)(batchnorm2)

        pred = Dense(self.num_classes, activation="softmax",
                     name="output")(dropout)
        self.model = Model(inputs=[svm_features, lstm_features],
                           outputs=[pred])

        return self.model
示例#9
0
def create_shared_weights(conv1, conv2, input_shape):
    with K.name_scope(conv1.name):
        conv1.build(input_shape)
    with K.name_scope(conv2.name):
        conv2.build(input_shape)
    conv2.kernel = conv1.kernel
    conv2.bias = conv1.bias
    conv2._trainable_weights = []
    conv2._trainable_weights.append(conv2.kernel)
    conv2._trainable_weights.append(conv2.bias)
示例#10
0
文件: tcn.py 项目: adsbh7/TCN
    def build(self, input_shape):

        with K.name_scope(self.name):  # name scope used to make sure weights get unique names
            self.layers = []
            self.res_output_shape = input_shape

            for k in range(2):
                with K.name_scope('conv1D_{}'.format(k)):         # conv1D_0 or conv1D_1
                    self._add_and_activate_layer(Conv1D(filters=self.nb_filters,
                                                        kernel_size=self.kernel_size,
                                                        dilation_rate=self.dilation_rate,
                                                        padding=self.padding,
                                                        name='conv1D_{}'.format(k),
                                                        kernel_initializer=self.kernel_initializer))
                    #self._add_and_activate_layer(MaxPooling1D(pool_size=3))

                with K.name_scope('norm_{}'.format(k)):           # norm_0 or norm_1
                    if self.use_batch_norm:
                        self._add_and_activate_layer(BatchNormalization())
                        print('use batch_norm')
                    elif self.use_layer_norm:
                        self._add_and_activate_layer(LayerNormalization())
                        print('use layer_norm')

                self._add_and_activate_layer(Activation('relu'))
                self._add_and_activate_layer(SpatialDropout1D(rate=self.dropout_rate))

            if not self.last_block:
                # 1x1 conv to match the shapes (channel dimension).
                name = 'conv1D_{}'.format(k + 1)
                with K.name_scope(name):
                    # make and build this layer separately because it directly uses input_shape
                    self.shape_match_conv = Conv1D(filters=self.nb_filters,
                                                   kernel_size=1,
                                                   padding='same',            # len(input) == len(output)
                                                   name=name,
                                                   kernel_initializer=self.kernel_initializer)

            else:
                self.shape_match_conv = Lambda(lambda x: x, name='identity')   # Lambda : Layer로 감싸줌

            self.shape_match_conv.build(input_shape)
            self.res_output_shape = self.shape_match_conv.compute_output_shape(input_shape)

            self.final_activation = Activation(self.activation)
            self.final_activation.build(self.res_output_shape)  # probably isn't necessary

            # this is done to force Keras to add the layers in the list to self._layers
            for layer in self.layers:
                self.__setattr__(layer.name, layer)

            super(ResidualBlock, self).build(input_shape)  # done to make sure self.built is set True
示例#11
0
    def make_model(self):
        
        with k.name_scope("SVM_features"):

            svm_features = Input(shape = (self.svm_dims,), name = "svm_features")
            svm_input = Dense(128, activation = None, name = "svm_dense")(svm_features)
            svm_input = LeakyReLU()(svm_input) 
        
        with k.name_scope("LSTM_features"):
            
            lstm_features = Input(shape = (None, self.input_shape), name = "lstm_features")
            lstm_mask = Masking(mask_value = Config.MASKING_VALUE, input_shape = (self.time_steps, self.input_shape))(lstm_features)
            lstm_seq = Bidirectional(LSTM(Config.LSTM_UNITS, return_sequences = True,  name = "lstm_sequence"))(lstm_mask)
			lstm_output = Lambda(lambda t: tensorflow.reduce_mean(t,1))(lstm_seq)
示例#12
0
 def __init__(self,
              lr=0.001,
              beta_1=0.9,
              beta_2=0.999,
              epsilon=None,
              decay=0.,
              weight_decay=0.,
              amsgrad=False,
              total_steps=0,
              warmup_proportion=0.1,
              min_lr=0.,
              **kwargs):
     super(RAdam, self).__init__(name='RAdam', **kwargs)
     with K.name_scope(self.__class__.__name__):
         self._iterations = K.variable(0, dtype='int64', name='iterations')
         self._lr = K.variable(lr, name='lr')
         self.beta_1 = K.variable(beta_1, name='beta_1')
         self.beta_2 = K.variable(beta_2, name='beta_2')
         self.decay = K.variable(decay, name='decay')
         self.weight_decay = K.variable(weight_decay, name='weight_decay')
         self.total_steps = K.variable(total_steps, name='total_steps')
         self.warmup_proportion = K.variable(warmup_proportion,
                                             name='warmup_proportion')
         self.min_lr = K.variable(min_lr, name='min_lr')
     if epsilon is None:
         epsilon = K.epsilon()
     self.epsilon = epsilon
     self.initial_decay = decay
     self.initial_weight_decay = weight_decay
     self.initial_total_steps = total_steps
     self.amsgrad = amsgrad
示例#13
0
 def __init__(self,
              lr=1e-1,
              beta_1=0.9,
              beta_2=0.999,
              epsilon=1e-8,
              decay=0.,
              amsgrad=False,
              partial=1. / 8.,
              **kwargs):
     if partial < 0 or partial > 0.5:
         raise ValueError(
             "Padam: 'partial' must be a positive float with a maximum "
             "value of `0.5`, since higher values will cause divergence "
             "during training.")
     super(Padam, self).__init__(**kwargs)
     with K.name_scope(self.__class__.__name__):
         self.iterations = K.variable(0, dtype='int64', name='iterations')
         self.lr = K.variable(lr, name='lr')
         self.beta_1 = K.variable(beta_1, name='beta_1')
         self.beta_2 = K.variable(beta_2, name='beta_2')
         self.decay = K.variable(decay, name='decay')
     if epsilon is None:
         epsilon = K.epsilon()
     self.epsilon = epsilon
     self.partial = partial
     self.initial_decay = decay
     self.amsgrad = amsgrad
示例#14
0
 def __init__(self, optimizer, sync_period=5, slow_step=0.5, **kwargs):
   super(Lookahead, self).__init__(**kwargs)
   self.optimizer = keras.optimizers.get(optimizer)
   with K.name_scope(self.__class__.__name__):
     self.sync_period = K.variable(
         sync_period, dtype='int64', name='sync_period')
     self.slow_step = K.variable(slow_step, name='slow_step')
示例#15
0
 def __init__(self,
              lr=1e-3,
              beta_1=0.9,
              beta_2=0.999,
              final_lr=0.1, 
              epsilon=None,
              decay=0, 
              amsbound=False,
              weight_decay=0.0,
            **kwargs):
     super(AdaBound, self).__init__(**kwargs)
     with K.name_scope(self.__class__.__name__):
         self.iterations = K.variable(0, dtype='int64', name='iterations')
         self.lr = K.variable(lr, name='lr')
         self.beta_1 = K.variable(beta_1, name='beta_1')
         self.beta_2 = K.variable(beta_2, name='beta_2')
         self.decay = K.variable(decay, name='decay')
     self.initial_decay = decay
     self.weight_decay = float(weight_decay)
     self.base_lr = float(lr)
     self.final_lr = final_lr
         
     if epsilon is None:
         epsilon = K.epsilon()
     self.epsilon = epsilon
     self.amsbound = amsbound
示例#16
0
 def __init__(self,
              lr=0.001,
              beta_1=0.9,
              beta_2=0.999,
              epsilon=None,
              decay=0.,
              amsgrad=False,
              accum_iters=1,
              **kwargs):
     if accum_iters < 1:
         raise ValueError('accum_iters must be >= 1')
     super(AdamAccumulate, self).__init__(**kwargs)
     with K.name_scope(self.__class__.__name__):
         self.iterations = K.variable(0, dtype='int64', name='iterations')
         self.lr = K.variable(lr, name='lr')
         self.beta_1 = K.variable(beta_1, name='beta_1')
         self.beta_2 = K.variable(beta_2, name='beta_2')
         self.decay = K.variable(decay, name='decay')
     if epsilon is None:
         epsilon = K.epsilon()
     self.epsilon = epsilon
     self.initial_decay = decay
     self.amsgrad = amsgrad
     self.accum_iters = K.variable(accum_iters, K.dtype(self.iterations))
     self.accum_iters_float = K.cast(self.accum_iters, K.floatx())
示例#17
0
    def build(self, input_shape):

        with K.name_scope(self.name):
            
            self.attn_block = AttentionBlock(w_dim=self.w_dim, name=f'AttentionBlock_{self.stack}_{self.dilation}')
                    
        super(SpatialBlock, self).build(input_shape)  # done to make sure self.built is set True
示例#18
0
def _separable_conv_block(ip, filters, kernel_size=(3, 3), strides=(1, 1),
                          weight_decay=5e-5, id=None):
    '''Adds 2 blocks of [relu-separable conv-batchnorm]

    # Arguments:
        ip: input tensor
        filters: number of output filters per layer
        kernel_size: kernel size of separable convolutions
        strides: strided convolution for downsampling
        weight_decay: l2 regularization weight
        id: string id

    # Returns:
        a Keras tensor
    '''
    channel_dim = 1 if K.image_data_format() == 'channels_first' else -1

    with K.name_scope('separable_conv_block_%s' % id):
        x = Activation('relu')(ip)
        x = SeparableConv2D(filters, kernel_size, strides=strides,
                            name='separable_conv_1_%s' % id, padding='same',
                            use_bias=False, kernel_initializer='he_normal',
                            kernel_regularizer=l2(weight_decay))(x)
        x = BatchNormalization(axis=channel_dim, momentum=_BN_DECAY,
                               epsilon=_BN_EPSILON,
                               name="separable_conv_1_bn_%s" % id)(x)
        x = Activation('relu')(x)
        x = SeparableConv2D(filters, kernel_size, name='separable_conv_2_%s' % id,
                            padding='same', use_bias=False,
                            kernel_initializer='he_normal',
                            kernel_regularizer=l2(weight_decay))(x)
        x = BatchNormalization(axis=channel_dim, momentum=_BN_DECAY,
                               epsilon=_BN_EPSILON,
                               name="separable_conv_2_bn_%s" % id)(x)
    return x
示例#19
0
    def get_updates(self, loss, params):
        if len(self.updates) > 0:
            return self.updates
        multiplies = {}
        for param in params:
            multiplier = self._get_multiplier(param.name)
            if multiplier not in multiplies:
                multiplies[multiplier] = []
            multiplies[multiplier].append(param)

        self.updates, self.weights = [], []
        origin_lr = getattr(self, self.lr_attr)
        for i, (multiplier, params) in enumerate(multiplies.items()):
            lr = origin_lr
            if callable(multiplier):
                lr = lr * multiplier(K.cast(self.optimizer.iterations, K.floatx()))
            elif multiplier != 1.0:
                lr = lr * multiplier
            setattr(self, self.lr_attr, lr)
            with K.name_scope('Group_{}'.format(i)):
                self.updates += self.optimizer.get_updates(loss, params)
            print(self.multipliers, i, self.optimizer.weights)
            for w in self.optimizer.weights:
                if w not in self.weights:
                    self.weights.append(w)
        setattr(self, self.lr_attr, origin_lr)

        return self.updates
示例#20
0
def Encoder1(input_shape,
             base_dim,
             kernel_size,
             num_scale,
             block_per_scale,
             depth_per_block,
             fc_dim,
             latent_dim,
             name='Encoder1'):
    with K.name_scope(name):
        dim = base_dim
        enc_input = Input(shape=input_shape)
        y = Conv2D(dim, kernel_size, padding='same', strides=2)(enc_input)
        for i in range(num_scale - 1):
            y = ScaleBlock(dim, block_per_scale, depth_per_block,
                           kernel_size)(y)
            if i != num_scale - 1:
                dim *= 2
                y = Conv2D(dim, kernel_size, strides=2, padding='same')(y)

        y = GlobalAveragePooling2D()(y)
        y = ScaleFcBlock(fc_dim, 1, depth_per_block)(y)

        mu_z = Dense(latent_dim)(y)
        logsd_z = Dense(latent_dim)(y)
        logvar_z = 2 * logsd_z
        sd_z = tf.exp(logsd_z)
        z = mu_z + K.random_normal(shape=(K.shape(mu_z)[0], latent_dim)) * sd_z
        encoder = Model(enc_input, [mu_z, logvar_z, z])
    return encoder
    def __init__(self, optimizer, steps_per_update=1, **kwargs):
        assert float(
            tf.__version__[:4]
        ) <= 1.13, "Please make sure that your tensorflow version is 1.13.x or lower."
        super(AccumOptimizer, self).__init__(**kwargs)
        self.optimizer = optimizer
        with K.name_scope(self.__class__.__name__):
            self.steps_per_update = steps_per_update
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.cond = K.equal(self.iterations % self.steps_per_update, 0)
            self.lr = self.optimizer.lr
            self.optimizer.lr = K.switch(self.cond, self.optimizer.lr, 0.)
            for attr in ['momentum', 'rho', 'beta_1', 'beta_2']:
                if hasattr(self.optimizer, attr):
                    value = getattr(self.optimizer, attr)
                    setattr(self, attr, value)
                    setattr(self.optimizer, attr,
                            K.switch(self.cond, value, 1 - 1e-7))
            for attr in self.optimizer.get_config():
                if not hasattr(self, attr):
                    value = getattr(self.optimizer, attr)
                    setattr(self, attr, value)
            # Cover the original get_gradients method with accumulative gradients.
            def get_gradients(loss, params):
                return [ag / self.steps_per_update for ag in self.accum_grads]

            self.optimizer.get_gradients = get_gradients
示例#22
0
    def __init__(self,
                 lr=0.001,
                 final_lr=0.1,
                 beta_1=0.9,
                 beta_2=0.999,
                 gamma=1e-3,
                 epsilon=None,
                 decay=0.,
                 amsbound=False,
                 weight_decay=0.0,
                 **kwargs):
        super(AdaBound, self).__init__(**kwargs)

        if not 0. <= gamma <= 1.:
            raise ValueError(
                "Invalid `gamma` parameter. Must lie in [0, 1] range.")

        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.lr = K.variable(lr, name='lr')
            self.beta_1 = K.variable(beta_1, name='beta_1')
            self.beta_2 = K.variable(beta_2, name='beta_2')
            self.decay = K.variable(decay, name='decay')

        self.final_lr = final_lr
        self.gamma = gamma

        if epsilon is None:
            epsilon = K.epsilon()
        self.epsilon = epsilon
        self.initial_decay = decay
        self.amsbound = amsbound

        self.weight_decay = float(weight_decay)
        self.base_lr = float(lr)
示例#23
0
 def __init__(self,
              lr=0.001,
              beta_1=0.9,
              beta_2=0.999,
              epsilon=None,
              decay=0.,
              amsgrad=False,
              clips={},
              verbose=0,
              **kwargs):
     super(AdamwithClip, self).__init__(**kwargs)
     with K.name_scope(self.__class__.__name__):
         self.iterations = K.variable(0, dtype='int64', name='iterations')
         self.lr = K.variable(lr, name='lr')
         self.beta_1 = K.variable(beta_1, name='beta_1')
         self.beta_2 = K.variable(beta_2, name='beta_2')
         self.decay = K.variable(decay, name='decay')
         self.clips = kdict(clips, 'clips')
         self.clips_val = clips
     if epsilon is None:
         epsilon = K.epsilon()
     self.epsilon = epsilon
     self.initial_decay = decay
     self.amsgrad = amsgrad
     self.verbose = verbose
示例#24
0
    def _build_residual(self, input_shape):

        self.residual_layers.append(
            MaxPooling1D(pool_size=3,
                         strides=self.strides,
                         padding=self.padding))
        self.residual_layers[-1].build(input_shape)
        output_shape = self.residual_layers[-1].compute_output_shape(
            input_shape)

        name = 'conv1D_bottleneck_1'
        with K.name_scope(name):
            self.residual_layers.append(
                Conv1D(filters=self.nb_filters,
                       kernel_size=1,
                       strides=self.strides,
                       padding=self.padding,
                       use_bias=False,
                       activation=self.activation,
                       name=name))
            self.residual_layers[-1].build(output_shape)
            output_shape = self.residual_layers[-1].compute_output_shape(
                output_shape)

        return output_shape
示例#25
0
 def decoder(
     self,
     inputs,
     mid_filters=512,
     out_filters=256,
     activation="relu",
     block_name="decoder",
 ):
     """ Create a decoder block
         Args:
             inputs (tensorflow.python.framework.ops.Tensor): inputs to the block
             mid_filters (int):                             : number of mid filters
             out_filters (int)                              : number of output filters
             activation (str):                              : activation function
             block_name (str):                              : name of the block to use
         Returns:
             A tensorflow.python.framework.ops.Tensor object
     """
     with K.name_scope(block_name):
         if activation == "leaky_relu":
             activation = None
             conv = LeakyReLU(alpha=0.3)(self.conv_act(
                 inputs, mid_filters, activation))
         else:
             conv = self.conv_act(inputs, mid_filters, activation)
         conv_tr = Conv2DTranspose(
             filters=out_filters,
             activation=activation,
             kernel_size=4,
             strides=2,
             padding="same",
         )(conv)
     return conv_tr
示例#26
0
 def add_regularisation(self, weights):
     """
     Given a batch of multi-head attention weights of shape (r*b, l_q, l_k),
     where b is the batch size, r is the number of attention heads, l_q is
     the query (Q) length and l_k is the key (K) length, group all attention
     vectors corresponding to the same word in Q, and for each attention
     group $A$ of shape (r, l_k), calculate $| A \times {A}^{T} - I |$. Here
     $| |$ denotes the Frobenius norm (the L2 matrix norm) and $I$ denotes
     the identity matrix of rank r.
     """
     rb, l_q, l_k = K.int_shape(weights)
     attention_groups = ops.group_attentions(self.r, weights)
     # flatten the batch axis to produce a tensor of [r, l_k] attention
     # groups
     groups = K.reshape(attention_groups, [-1, self.r, l_k])
     # calculate $A \times A^T$ - similarity between attention weights
     similarity = K.batch_dot(groups, groups, axes=[2, 2])
     # subtract an identity matrix to enforce sparsity
     norms = ops.frobenius_norm(similarity -
                                tf.eye(self.r, dtype=K.floatx()),
                                axes=[1, 2])
     # restore batch-structure, calculate average loss contribution
     # across all time-steps in a sequence and multiple by self.regularise
     with K.name_scope('activity_regularizer'):
         loss_contributions = (
             self.regularise *
             K.mean(K.reshape(norms, [-1, l_q]), axis=None))
     self.add_loss([loss_contributions], inputs=True)
 def __init__(self,
              lr=0.001,
              beta_1=0.9,
              beta_2=0.999,
              epsilon=None,
              decay=0.,
              weight_decay=0.025,
              batch_size=1,
              samples_per_epoch=1,
              epochs=1,
              lr_mult=0.1,
              excluded_vars=[],
              **kwargs):
     super().__init__(**kwargs)
     with K.name_scope(self.__class__.__name__):
         self.iterations = K.variable(0, dtype='int64', name='iterations')
         self.lr = K.variable(lr, name='lr')
         self.beta_1 = K.variable(beta_1, name='beta_1')
         self.beta_2 = K.variable(beta_2, name='beta_2')
         self.decay = K.variable(decay, name='decay')
         self.weight_decay = K.variable(weight_decay, name='weight_decay')
         self.batch_size = K.variable(batch_size, name='batch_size')
         self.samples_per_epoch = K.variable(samples_per_epoch,
                                             name='samples_per_epoch')
         self.epochs = K.variable(epochs, name='epochs')
         self.lr_mult = lr_mult
         self.excluded_vars = excluded_vars
     if epsilon is None:
         epsilon = K.epsilon()
     self.epsilon = epsilon
     self.initial_decay = decay
示例#28
0
def Decoder1(inp_shape,
             latent_dim,
             dims,
             scales,
             kernel_size,
             block_per_scale,
             depth_per_block,
             name='Decoder1'):
    base_wh = 4
    fc_dim = base_wh * base_wh * dims[0]
    data_depth = inp_shape[-1]

    with K.name_scope(name):
        dec_input = Input(shape=(latent_dim, ))
        y = Dense(fc_dim)(dec_input)
        y = Reshape((base_wh, base_wh, dims[0]))(y)

        for i in range(len(scales) - 1):
            y = Conv2DTranspose(dims[i + 1],
                                kernel_size,
                                strides=2,
                                padding='same')(y)
            if not (i == len(scales) - 2):
                y = ScaleBlock(dims[i + 1], block_per_scale, depth_per_block,
                               kernel_size)(y)

        x_hat = Conv2D(data_depth,
                       kernel_size,
                       1,
                       padding='same',
                       activation='sigmoid')(y)
        decoder1 = Model(dec_input, x_hat)

    return (decoder1)
示例#29
0
    def make_model(self):
        
        with k.name_scope("SVM_features"):

            svm_features = Input(shape = (self.svm_dims,), name = "svm_features")
            svm_input = Dense(128, activation = "tanh", name = "svm_dense")(svm_features)
            # svm_input = LeakyReLU()(svm_input) 
        
        with k.name_scope("LSTM_features"):
            
            lstm_features = Input(shape = (None, self.input_shape), name = "lstm_features")
            lstm_mask = Masking(mask_value = Config.MASKING_VALUE, input_shape = (self.time_steps, self.input_shape))(lstm_features)
            lstm_output, state_h, state_c = LSTM(Config.LSTM_UNITS, return_sequences = True, return_state = True, name = "lstm_sequence")(lstm_mask)
            # lstm_output_last = LSTM(Config.LSTM_UNITS, return_sequences = False, name = "lstm_last_output")(lstm_mask)
        
        with k.name_scope("AttentionLayer_1"):
            
            __, lstm_output_ex_last = Lambda(lambda t: [t, t[:, :-1, :]], name = "lstm_T1_Tn-1")(lstm_output)
            lstm_output_last = state_h 
            attention_weights1 = dot([lstm_output_last, lstm_output_ex_last], name = "attention_weights1", axes = -1) # [B, 1, M]
            attention_weights2 = Activation("softmax", name = "attention_weights2")(attention_weights1)
            lstm_attention = dot([attention_weights2, lstm_output_ex_last], name = "lstm_attention", axes = 1)
            # final_attention = concatenate([lstm_attention, lstm_output_last])
            print(lstm_attention)
        
        """
        with k.name_scope("AttentionLayer_2"):
            # Attention layer 2 - attention params
            input_attention = Input(shape = (Config.ATTENTION_UNITS, ), name = "attention_params")
            u = Dense(Config.ATTENTION_UNITS, activation = "softmax", name = "attention_u")(input_attention)
            alpha = dot([u, lstm_output], axes = -1)
            alpha = Activation("softmax", name = "attention_weights")(alpha)
            # weighted pool
            lstm_attention = dot([alpha, lstm_output], name = "attention_output", axes = 1)
        """
        with k.name_scope("Concatenate"):
            x = concatenate([lstm_attention, svm_input])
            x_dense = Dense(128, activation = "tanh")(x)
            # x_dense = LeakyReLU()(x_dense)
            dense_2 = Dense(128, activation = "tanh")(x_dense)
            batchnorm2 = BatchNormalization()(dense_2)
            dropout = Dropout(rate = 0.3, name = "dropout")(batchnorm2) 
            
        pred = Dense(self.num_classes, activation = "softmax", name = "output")(dropout)
        self.model = Model(inputs = [svm_features, lstm_features], outputs = [pred])
        
        return self.model
示例#30
0
    def inject(self, model):
        """Inject the Lookahead algorithm for the given model.
        The following code is modified from keras's _make_train_function method.
        See: https://github.com/keras-team/keras/blob/master/keras/engine/training.py#L497
        """
        if not hasattr(model, 'train_function'):
            raise RuntimeError('You must compile your model before using it.')

        model._check_trainable_weights_consistency()

        if model.train_function is None:
            inputs = (model._feed_inputs + model._feed_targets +
                      model._feed_sample_weights)
            if model._uses_dynamic_learning_phase():
                inputs += [K.learning_phase()]
            fast_params = model._collected_trainable_weights

            with K.name_scope('training'):
                with K.name_scope(model.optimizer.__class__.__name__):
                    training_updates = model.optimizer.get_updates(
                        params=fast_params, loss=model.total_loss)
                    slow_params = [K.variable(p) for p in fast_params]
                fast_updates = (model.updates + training_updates +
                                model.metrics_updates)

                slow_updates, copy_updates = [], []
                for p, q in zip(fast_params, slow_params):
                    slow_updates.append(K.update(q, q + self.alpha * (p - q)))
                    copy_updates.append(K.update(p, q))

                # Gets loss and metrics. Updates weights at each call.
                fast_train_function = K.function(inputs, [model.total_loss] +
                                                 model.metrics_tensors,
                                                 updates=fast_updates,
                                                 name='fast_train_function',
                                                 **model._function_kwargs)

                def F(inputs):
                    self.count += 1
                    R = fast_train_function(inputs)
                    if self.count % self.k == 0:
                        K.batch_get_value(slow_updates)
                        K.batch_get_value(copy_updates)
                    return R

                model.train_function = F