示例#1
0
 def __init__(self,
              hidden_layers,
              num_outputs=None,
              activation_fn="relu",
              name=None,
              **kwargs):
     super(DenseNetwork, self).__init__(name=name)
     self.layers = [
         Dense(
             size,
             name=f"fc_{k}",
             activation=activation_fn,
             kernel_initializer=initializers.glorot_normal(),
             bias_initializer=initializers.constant(0.1),
         ) for k, size in enumerate(hidden_layers)
     ]
     if num_outputs:
         self.layers.append(
             Dense(
                 num_outputs,
                 name="fc_out",
                 activation=None,
                 kernel_initializer=initializers.glorot_normal(),
                 bias_initializer=initializers.constant(0.1),
             ))
示例#2
0
 def __init__(self, num_classes=6, L1=128, L2=256,
              cell_units=128, num_linear=768, p=10, time_step=100,
              F1=64, dropout_keep_prob=0.8):
     super().__init__()
     # strides = [1,1,1,1]
     self.conv1 = Conv2D(filters=L1, kernel_size=(5, 3), padding="same", use_bias=True,
                         bias_initializer=initializers.constant(0.1))
     self.dropout_keep_prob = dropout_keep_prob
     self.max_pool = MaxPool2D(pool_size=2, strides=2, padding='valid')
     self.conv2 = Conv2D(filters=L2, kernel_size=(5, 3), padding="same", use_bias=True,
                         bias_initializer=initializers.constant(0.1))
     self.conv3 = Conv2D(filters=L2, kernel_size=(5, 3), padding="same", use_bias=True,
                         bias_initializer=initializers.constant(0.1))
     self.conv4 = Conv2D(filters=L2, kernel_size=(5, 3), padding="same", use_bias=True,
                         bias_initializer=initializers.constant(0.1))
     self.conv5 = Conv2D(filters=L2, kernel_size=(5, 3), padding="same", use_bias=True,
                         bias_initializer=initializers.constant(0.1))
     self.conv6 = Conv2D(filters=L2, kernel_size=(5, 3), padding="same", use_bias=True,
                         bias_initializer=initializers.constant(0.1))
     self.dropout = Dropout(dropout_keep_prob)
     self.reshape1 = Reshape((-1, time_step, L2 * p))
     self.reshape2 = Reshape((-1, L2 * p))
     # self.reshape3 = Reshape((-1, time_step, num_linear))
     self.flatten = Flatten()
     self.d1 = Dense(num_linear, use_bias=True, bias_initializer=initializers.constant(0.1),
                     kernel_initializer=initializers.TruncatedNormal(mean=0., stddev=0.1))
     self.bn = BatchNormalization()
     self.d2 = Dense(F1, use_bias=True, bias_initializer=initializers.constant(0.1),
                     kernel_initializer=initializers.TruncatedNormal(mean=0., stddev=0.1))
     self.d3 = Dense(num_classes, use_bias=True, bias_initializer=initializers.constant(0.1),
                     kernel_initializer=initializers.TruncatedNormal(mean=0., stddev=0.1), activation='softmax')
     self.bilstm = Bidirectional(LSTM(cell_units, return_sequences=True), merge_mode='concat')
     self.attention = attention()
示例#3
0
 def __init__(self,
              tau,
              bias=1.0,
              nonlinearity='linear',
              tau_learn='True',
              **kwargs):
     self.tau_ = constant(tau)
     self.tau_learn_ = tau_learn
     self.bias_ = constant(bias)
     self.nonlinearity = nonlinearity
     super(TauLayer, self).__init__(**kwargs)
示例#4
0
    def _create_model_predictor(self, lr):
        y = self.y
        Z0_start = y[:, 0]
        V0_start = (np.argmax(np.cumsum(y > 0, axis=1) == 2, axis=1)
                    - np.argmax(np.cumsum(y > 0, axis=1) == 1, axis=1)).reshape((y.shape[0], 1))

        inp_y = Input(shape=(None, 1))
        inp_emb_id = Input(shape=(1,))  # Dummy ID for embeddings

        inp_y_decoded = inp_y
        if self.seasonality:
            for seasonality in self.seasonality:
                inp_y_decoded = seasonality.apply_decoder(inp_y_decoded)

        # (Ab)using embeddings here for initial value variables
        init_Z0 = Embedding(y.shape[0], 1, embeddings_initializer=constant(Z0_start), name="Z0")(inp_emb_id)[:, 0, :]
        init_V0 = Embedding(y.shape[0], 1, embeddings_initializer=constant(V0_start), name="V0")(inp_emb_id)[:, 0, :]

        rnncell = CrostonsRNN(y.shape[0], self.sba)
        rnn = RNN(rnncell, return_sequences=True, return_state=True)
        out_rnn = rnn((inp_y_decoded, tf.cast(inp_emb_id[:, None, :] * tf.ones_like(inp_y_decoded), tf.int32)),
                      initial_state=[init_Z0, init_V0, tf.ones_like(inp_emb_id)])

        if self.sba:
            initial_out = ((init_Z0 / init_V0) * (1 - rnncell.alpha / 2))
        else:
            initial_out = (init_Z0 / init_V0)

        out = tf.keras.layers.concatenate([
            initial_out[:, :, None],
            out_rnn[0]
        ], axis=1)

        if self.seasonality:
            for seasonality in self.seasonality:
                out = seasonality.apply_encoder(out)

        model = Model(inputs=[inp_y, inp_emb_id]
                             + ([input
                                for seasonality in self.seasonality
                                for input in seasonality.get_model_inputs()] if self.seasonality else []),
                      outputs=out)
        model.compile(Adam(lr), self.loss)

        # predictor also outputs final state for predicting out-of-sample
        predictor = Model(inputs=[inp_y, inp_emb_id]
                                 + ([input
                                     for seasonality in self.seasonality
                                     for input in seasonality.get_model_inputs()] if self.seasonality else []),
                          outputs=[out, out_rnn[1:]]
        )

        return model, predictor
示例#5
0
    def build(self, input_shape):
        # Typical value from literature
        init_alpha, init_beta = 0.05, 0.05

        # Smoothing for sales
        self.alpha = self.add_weight(shape=(self.n_time_series, 1),
                                     initializer=constant(init_alpha), name='alpha',
                                     constraint=AbsoluteMinMax(0.0, 1.0))
        # Smoothing for intervals
        self.beta = self.add_weight(shape=(self.n_time_series, 1),
                                    initializer=constant(init_beta), name='beta',
                                    constraint=AbsoluteMinMax(0.0, 1.0))
        self.built = True
    def build_mlp_clf(input_shape):
        x_in = Input(shape=(input_shape, ))

        def dense_block(h, units):
            h = Dense(units=units,
                      use_bias=True,
                      activation=None,
                      kernel_initializer=he_normal(),
                      bias_initializer=constant(0.0))(h)
            h = BatchNormalization()(h)
            h = LeakyReLU(0.2)(h)
            h = Dropout(rate=0.5)(h)
            return h

        h = dense_block(x_in, units=32)
        h = dense_block(h, units=16)
        h = Dense(units=1,
                  use_bias=False,
                  activation='sigmoid',
                  kernel_initializer='normal',
                  bias_initializer=constant(0.0))(h)

        mlp_clf = Model(inputs=x_in, outputs=h)
        mlp_clf.compile(loss='binary_crossentropy',
                        optimizer=Adam(5e-4),
                        metrics=['accuracy'])

        return mlp_clf
    def build(self, input_shape):

        self.W = self.add_weight(name='W',
                                 shape=(input_shape[1], input_shape[2]),
                                 initializer=constant(1.0),
                                 trainable=True,
                                 regularizer=reg)
        self.b = self.add_weight(name="b",
                                 shape=(1, input_shape[2]),
                                 initializer=constant(0.0),
                                 trainable=True,
                                 regularizer=reg)

        # Build the layer from the base class
        # This also sets self.built = True
        super(FusionLayer, self).build(input_shape)
    def build(self, input_shape):
        assert len(input_shape) == 5, "The input Tensor should have shape=[None, input_height, input_width," \
                                      " input_num_capsule, input_num_atoms]"
        self.input_height = input_shape[1]
        self.input_width = input_shape[2]
        self.input_num_capsule = input_shape[3]
        self.input_num_atoms = input_shape[4]

        # Transform matrix
        if self.upsamp_type == 'subpix':
            self.W = self.add_weight(shape=[self.kernel_size, self.kernel_size,
                                            self.input_num_atoms,
                                            self.num_capsule * self.num_atoms * self.scaling * self.scaling],
                                     initializer=self.kernel_initializer,
                                     name='W')
        elif self.upsamp_type == 'resize':
            self.W = self.add_weight(shape=[self.kernel_size, self.kernel_size,
                                            self.input_num_atoms, self.num_capsule * self.num_atoms],
                                     initializer=self.kernel_initializer, name='W')
        elif self.upsamp_type == 'deconv':
            self.W = self.add_weight(shape=[self.kernel_size, self.kernel_size,
                                            self.num_capsule * self.num_atoms, self.input_num_atoms],
                                     initializer=self.kernel_initializer, name='W')
        else:
            raise NotImplementedError('Upsampling must be one of: "deconv", "resize", or "subpix"')

        self.b = self.add_weight(shape=[1, 1, self.num_capsule, self.num_atoms],
                                 initializer=initializers.constant(0.1),
                                 name='b')

        self.built = True
示例#9
0
 def _create_embedding(self):
     self._embedding = Embedding(
         self.seasonal_period,
         output_dim=1,
         name="seas_emb_%s" % self.seasonality_type,
         embeddings_initializer=constant(0),
         embeddings_regularizer=l1_l2(
             l2=self.l2_reg) if self.l2_reg else None)
 def dense_block(h, units):
     h = Dense(units=units,
               use_bias=True,
               activation=None,
               kernel_initializer=he_normal(),
               bias_initializer=constant(0.0))(h)
     h = BatchNormalization()(h)
     h = LeakyReLU(0.2)(h)
     h = Dropout(rate=0.5)(h)
     return h
示例#11
0
 def build(self, input_shape):
     """Build the layer."""
     super().build(input_shape)
     self.q, self.p = self.kernel.shape
     self.sigma = self.add_weight('sigma',
                                  shape=[self.p + self.q],
                                  initializer=initializers.constant(
                                      self.initial_sigma),
                                  dtype=self.dtype,
                                  trainable=True)
示例#12
0
    def build(self, input_shape):
        # Initial values copied from statsmodels implementation
        init_alpha = 0.5 / max(self.state_size[-1], 1)
        # Smoothing
        self.alpha = self.add_weight(shape=(input_shape[-1], 1),
                                     initializer=constant(init_alpha), name='alpha',
                                     constraint=AbsoluteMinMax(0.0, 1.0))
        if self.trend:
            self.beta = self.add_weight(shape=(input_shape[-1], 1),
                                        initializer=constant(0.1 * init_alpha), name='beta',
                                        constraint=AbsoluteMinMax(0.0, 1.0))
            # Trend damping
            self.phi = self.add_weight(shape=(input_shape[-1], 1), initializer=constant(0.99), name='phi',
                                       constraint=AbsoluteMinMax(0.8, 1.0))

        if self.seasonal:
            self.gamma = self.add_weight(shape=(input_shape[-1], 1), initializer=constant(0.5),
                                         name='gamma', constraint=AbsoluteMinMax(0.0, 1.0))

        self.built = True
示例#13
0
    def _create_embedding(self):
        # First embedding for time series ID
        self._embedding = Embedding(
            self.n_time_series,
            output_dim=self.n_dim,
            name="seas_emb_%s" % self.seasonality_type,
            embeddings_initializer=constant(0),
            embeddings_regularizer=l1_l2(
                l2=self.l2_reg) if self.l2_reg else None)

        self._seasonality_weights = Dense(self.seasonal_period,
                                          activation='linear')
    def create_mdrnn(self, direction):
        kernel_initializer = initializers.zeros()
        recurrent_initializer = initializers.constant(2)
        bias_initializer = initializers.zeros()

        return MDRNN(units=1, input_shape=(None, 1),
                     kernel_initializer=kernel_initializer,
                     recurrent_initializer=recurrent_initializer,
                     bias_initializer=bias_initializer,
                     activation=None,
                     return_sequences=True,
                     direction=direction)
示例#15
0
 def build(self, input_shape):
     self.kernel_mu = self.add_weight(
         name='kernel_mu',
         shape=(input_shape[1], self.units),
         initializer=tf.keras.initializers.random_normal(
             stddev=self.init_sigma),
         trainable=True)
     self.bias_mu = self.add_weight(
         name='bias_mu',
         shape=(self.units, ),
         initializer=initializers.random_normal(stddev=self.init_sigma),
         trainable=True)
     self.kernel_rho = self.add_weight(
         name='kernel_rho',
         shape=(input_shape[1], self.units),
         initializer=initializers.constant(0.0),
         trainable=True)
     self.bias_rho = self.add_weight(name='bias_rho',
                                     shape=(self.units, ),
                                     initializer=initializers.constant(0.0),
                                     trainable=True)
     super().build(input_shape)
示例#16
0
def createModel(initWeight=0):
    model = ks.Sequential()
    #model.add(ks.layers.Dense(units=1, input_shape=[1])
    #model.add(ks.layers.Dense(units=1, input_shape=[1],kernel_initializer='zeros')) #initializers
    #model.add(ks.layers.Dense(units=1, input_shape=[1], kernel_initializer='ones')) #bias_initializer
    model.add(
        ks.layers.Dense(units=1,
                        input_shape=[1],
                        kernel_initializer=initializers.constant(initWeight)))

    model.compile(optimizer='sgd', loss='mean_squared_error')
    model.summary()
    return model
    def build(self, input_shape):
        assert len(input_shape) == 5, "The input Tensor should have shape=[None, input_height, input_width," \
                                      " input_num_capsule, input_num_atoms]"
        self.input_height = input_shape[1].value
        self.input_width = input_shape[2].value
        self.input_num_capsule = input_shape[3].value
        self.input_num_atoms = input_shape[4].value
        '''
        # Transform matrix
        self.W = self.add_weight(shape=[self.kernel_size, self.kernel_size,
                                 self.input_num_atoms, self.num_capsule * self.num_atoms],
                                 initializer=self.kernel_initializer,
                                 name='W')
        '''
        ones_kernel = tf.ones([1, 1, 1, 1])
        W_shape = [
            self.kernel_size, self.kernel_size, self.input_num_atoms,
            self.num_capsule * self.num_atoms
        ]
        self.W = tf.layers.conv2d(ones_kernel,
                                  self.kernel_size * self.kernel_size *
                                  self.input_num_atoms * self.num_capsule *
                                  self.num_atoms,
                                  1,
                                  1,
                                  kernel_initializer=self.kernel_initializer,
                                  trainable=self.is_training,
                                  use_bias=False,
                                  reuse=tf.AUTO_REUSE,
                                  name='W' + self.namey)
        self.W = tf.reshape(self.W, W_shape)

        b_shape = [1, 1, self.num_capsule, self.num_atoms]
        ones_kernel = tf.ones([1, 1, 1, 1])
        self.b = tf.layers.conv2d(
            ones_kernel,
            self.num_atoms * self.num_capsule,
            1,
            1,
            kernel_initializer=initializers.constant(0.1),
            trainable=self.is_training,
            use_bias=False,
            reuse=tf.AUTO_REUSE,
            name='b' + self.namey)
        self.b = tf.reshape(self.b, b_shape)
        '''
        self.b = self.add_weight(shape=[1, 1, self.num_capsule, self.num_atoms],
                                 initializer=initializers.constant(0.1),
                                 name='b')
        '''
        self.built = True
示例#18
0
def _add_binom_m(num_classes,
                 tau,
                 tau_mode,
                 extra_depth=None,
                 extra_depth_nonlinearity='relu'):
    """Añade el bloque final de la red que contiene la implementación de la distribución Binomial.

    :param end_nonlinearity: La no linealidad que se desea aplicar en la primera capa Dense de un nodo.
    :param tau: Valor inicial de tau
    :param tau_mode:
     non_learnable = No se aprende el valor de tau, se escoge el valor pasado como parámetro.
     sigm_learnable = Se aprende como un peso mediante entrenamiento el valor de tau dentro de una función sigmoide (estabiliza el entrenamiento.)
    """
    assert tau_mode in ["non_learnable", "sigm_learnable"]
    # NOTE: Weird Bug. This is numerically unstable when
    # deterministic=True with the article's resnet
    # so: Added eps, and added clip
    model = tf.keras.Sequential()
    k = num_classes
    if extra_depth != None:
        model.add(Dense(units=extra_depth,
                        activation=extra_depth_nonlinearity))
    model.add(
        Dense(units=1,
              activation='sigmoid',
              kernel_initializer='he_normal',
              bias_initializer=constant(0.)))
    model.add(
        Dense(units=k,
              activation='linear',
              kernel_initializer='ones',
              trainable=False))

    c = np.asarray([[(i) for i in range(0, k)]], dtype="float32")
    from scipy.special import binom
    binom_coef = binom(k - 1, c).astype("float32")

    ### NOTE: NUMERICALLY UNSTABLE ###
    eps = 1e-6
    model.add(
        Lambda(lambda px: (K.log(binom_coef) + (c * K.log(px + eps)) +
                           ((k - 1 - c) * K.log(1. - px + eps)))))
    if tau_mode == "non_learnable":
        if tau != 1:
            model.add(Lambda(lambda px: px / tau))
    else:
        model.add(TauLayer(tau, bias=0., nonlinearity='sigmoid'))
    model.add(Activation('softmax'))
    # return model
    return model
示例#19
0
    def __init__(self,
                 n_states,
                 n_actions,
                 fc1_dims,
                 fc2_dims,
                 actor_activation,
                 directory='tmp/PPO'):
        super(ActorNetwork, self).__init__()

        self.checkpoint_file = os.path.join(directory, 'Actor_PPO')
        if not os.path.exists(directory):
            os.makedirs(directory)
        self.checkpoint_dir = directory

        # Orthogonal Weight initialization + Zero Bias initialization (Implementation Details)
        self.fc1 = Dense(fc1_dims,
                         input_shape=(n_states, ),
                         activation='tanh',
                         kernel_initializer=initializers.orthogonal(
                             np.sqrt(2)),
                         bias_initializer=initializers.constant(0.0))

        self.fc2 = Dense(fc2_dims,
                         activation='tanh',
                         kernel_initializer=initializers.orthogonal(
                             np.sqrt(2)),
                         bias_initializer=initializers.constant(0.0))

        # Last Layer weights ~100 times smaller (Implementation Details)
        self.fc3 = Dense(n_actions,
                         activation=actor_activation,
                         kernel_initializer=initializers.orthogonal(0.01),
                         bias_initializer=initializers.constant(0.0))

        # log_std weights learnable & independent of states (Implementation Detail)
        self.log_std = tf.Variable(tf.zeros((1, n_actions), dtype=tf.float32),
                                   trainable=True)
示例#20
0
    def build(self, input_shape):
        if self.shared:
            p_shape = 1
        else:
            if self.data_format == "channels_last":
                p_shape = input_shape[-1]
            else:
                p_shape = input_shape[1]

        self.p = self.add_weight(
            name="p",
            shape=[p_shape],
            initializer=initializers.constant(self._p_init),
            trainable=self.trainable,
        )
示例#21
0
    def __init__(self, n_states, fc1_dims, fc2_dims, directory='tmp/PPO'):
        super(CriticNetwork, self).__init__()

        self.checkpoint_file = os.path.join(directory, 'Critic_PPO')
        if not os.path.exists(directory):
            os.makedirs(directory)
        self.checkpoint_dir = directory

        self.fc1 = Dense(fc1_dims,
                         input_shape=(n_states, ),
                         activation='tanh',
                         kernel_initializer=initializers.orthogonal(
                             np.sqrt(2)),
                         bias_initializer=initializers.constant(0.0))

        self.fc2 = Dense(fc2_dims,
                         activation='tanh',
                         kernel_initializer=initializers.orthogonal(
                             np.sqrt(2)),
                         bias_initializer=initializers.constant(0.0))

        self.fc3 = Dense(1,
                         kernel_initializer=initializers.orthogonal(1.0),
                         bias_initializer=initializers.constant(0.0))
示例#22
0
 def build(self, input_shape):
     if self.gated:
         self.num_filters = self.num_filters * 2
     # size of V is L, Cin, Cout
     self.V = self.add_weight(
         shape=(self.filter_size, input_shape[-1], self.num_filters),
         dtype=tf.float32,
         initializer=initializers.RandomNormal(0, 0.01),
         trainable=True)
     self.g = self.add_weight(shape=(self.num_filters, ),
                              dtype=tf.float32,
                              initializer=initializers.constant(1.),
                              trainable=True)
     self.b = self.add_weight(shape=(self.num_filters, ),
                              dtype=tf.float32,
                              initializer=None,
                              trainable=True)
示例#23
0
def build_Embedded(self, action_space=6, dueling=True):
        self.network_size = 256      
        X_input = Input(shape=(self.REM_STEP*99) )
        # X_input = Input(shape=(self.REM_STEP*7,))
        input_reshape=(self.REM_STEP,99)
        X = X_input
        truncatedn_init = initializers.TruncatedNormal(0, 1e-2)
        x_init = "he_uniform"
        y_init = initializers.glorot_uniform()
        const_init = initializers.constant(1e-2)        
        X_reshaped = Reshape(input_reshape)(X_input)

 

        X = LayerNormalization(axis=2)(X_reshaped)
        X = LayerNormalization(axis=1)(X)
        X = Reshape((2,-1))(X)       
        X = Dense(self.network_size*2, kernel_initializer=y_init, activation ="relu")(X)
        X = Dense(256, kernel_initializer=y_init, activation ="relu")(X)
        X = TimeDistributed(Dense(self.network_size/4, kernel_initializer=y_init,activation ="relu"))(X)
        X = Flatten()(X)  
        if dueling:
            state_value = Dense(
                1, activation ="softmax")(X)
            state_value = Lambda(lambda s: K.expand_dims(
                s[:, 0], -1), output_shape=(action_space,))(state_value)

            action_advantage = Dense(
                action_space, activation ="linear") (X)
            action_advantage = Lambda(lambda a: a[:, :] - K.mean(
                a[:, :], keepdims=True), output_shape=(action_space,))(action_advantage)

            X = Add()([state_value, action_advantage])
        else:
            # Output Layer with # of actions: 2 nodes (left, right)
            X = Dense(action_space, activation="relu",
                      kernel_initializer='he_uniform')(X)

        model = Model(inputs=X_input, outputs=X, name='build_Embedded')
        model.compile(loss=huber_loss, optimizer=Adam(
            lr=self.learning_rate),  metrics=["accuracy"])

        # model.compile(loss="mean_squared_error", optimizer=Adam(lr=0.00025,epsilon=0.01), metrics=["accuracy"])
        model.summary()
        return model
示例#24
0
    def build(self, input_shape=None):
        channels = input_shape[-1]
        if channels is None:
            raise ValueError('Channel dimension of the inputs should be defined. Found `None`.')
        self.input_spec = layers.InputSpec(ndim=max(2, len(input_shape)), axes={-1: channels})

        kernel_initializer = initializers.random_normal(mean=0., stddev=np.sqrt(1. / channels))
        self.carry = layers.Dense(
            channels,
            kernel_initializer=kernel_initializer,
            bias_initializer=initializers.constant(-2.),
            activation='sigmoid')
        self.transform = layers.Dense(
            channels,
            kernel_initializer=kernel_initializer,
            activation='relu')

        super().build(input_shape)
    def build(self, input_shape):
        assert len(input_shape) == 5, "The input Tensor should have shape=[None, input_height, input_width," \
                                      " input_num_capsule, input_num_atoms]"
        self.input_height = input_shape[1]
        self.input_width = input_shape[2]
        self.input_num_capsule = input_shape[3]
        self.input_num_atoms = input_shape[4]

        # Transform matrix
        self.W = self.add_weight(shape=[self.kernel_size, self.kernel_size,
                                        self.input_num_atoms, self.num_capsule * self.num_atoms],
                                 initializer=self.kernel_initializer,
                                 name='W')

        self.b = self.add_weight(shape=[1, 1, self.num_capsule, self.num_atoms],
                                 initializer=initializers.constant(0.1),
                                 name='b')

        self.built = True
示例#26
0
    def build(self, input_shapes):
        """
        Builds the layer

        Args:
            input_shapes (list of int): shapes of the layer's inputs (node features and adjacency matrix)

        """
        n_nodes = input_shapes[-1]
        t_steps = input_shapes[-2]
        self.units = t_steps

        self.A = self.add_weight(
            name="A",
            shape=(n_nodes, n_nodes),
            trainable=False,
            initializer=initializers.constant(self.adj),
        )
        self.kernel = self.add_weight(
            shape=(t_steps, self.units),
            initializer=self.kernel_initializer,
            name="kernel",
            regularizer=self.kernel_regularizer,
            constraint=self.kernel_constraint,
        )

        if self.use_bias:
            self.bias = self.add_weight(
                shape=(n_nodes, ),
                initializer=self.bias_initializer,
                name="bias",
                regularizer=self.bias_regularizer,
                constraint=self.bias_constraint,
            )
        else:
            self.bias = None
        self.built = True
示例#27
0
    def build(self, input_shapes):
        """
        Builds the layer

        Args:
            input_shapes (list of int): shapes of the layer's inputs (the batches of node features)

        """
        _batch_dim, n_nodes, features = input_shapes

        self.A = self.add_weight(
            name="A",
            shape=(n_nodes, n_nodes),
            trainable=False,
            initializer=initializers.constant(self.adj),
        )
        self.kernel = self.add_weight(
            shape=(features, self.units),
            initializer=self.kernel_initializer,
            name="kernel",
            regularizer=self.kernel_regularizer,
            constraint=self.kernel_constraint,
        )

        if self.use_bias:
            self.bias = self.add_weight(
                # ensure the per-node bias can be broadcast across each feature
                shape=(n_nodes, 1),
                initializer=self.bias_initializer,
                name="bias",
                regularizer=self.bias_regularizer,
                constraint=self.bias_constraint,
            )
        else:
            self.bias = None
        self.built = True
示例#28
0
def get_initializers(activation):
    """Returns the kernel and bias initializers for the given activation
    function.

    Parameters
    ----------
    activation: str
        Activation function for a given layer

    Returns
    -------
        kernel_initializer: tf.keras.initializers
            Kernel initializer for the given activation function

        bias_initializer: tf.keras.initializers
            Bias initializer for the given activation function
    """
    if activation == "relu":
        kernel_initializer = he_normal()
        bias_initializer = constant(value=0.01)
    else:
        kernel_initializer = glorot_normal()
        bias_initializer = zeros()
    return kernel_initializer, bias_initializer
示例#29
0
    def _create_model_predictor(self, lr):
        y = self.y.ravel()
        # Initial values from statsmodels implementation
        if self.seasonal:
            l0_start = y[np.arange(y.size) % self.seasonal_period == 0].mean()
            lead, lag = y[self.seasonal_period: 2 * self.seasonal_period], y[:self.seasonal_period]

            if self.trend == "multiplicative":
                b0_start = ((lead - lag) / self.seasonal_period).mean()
            elif self.trend == "additive":
                b0_start = np.exp((np.log(lead.mean()) - np.log(lag.mean())) / self.seasonal_period)

            if self.seasonal == "multiplicative":
                s0_start = y[:self.seasonal_period] / l0_start
            elif self.seasonal == "additive":
                s0_start = y[:self.seasonal_period] - l0_start
        elif self.trend:
            l0_start = y[0]
            if self.trend == "multiplicative":
                b0_start = y[1] / l0_start
            elif self.trend == "additive":
                b0_start = y[1] - l0_start
        else:
            l0_start = y[0]

        inp_y = Input(shape=(None, 1))
        inp_emb_id = Input(shape=(1,))  # Dummy ID for embeddings

        # (Ab)using embeddings here for initial value variables
        init_l0 = [Embedding(1, 1, embeddings_initializer=constant(l0_start), name="l0")(inp_emb_id)[:, 0, :]]

        if self.trend:
            init_b0 = [Embedding(1, 1, embeddings_initializer=constant(b0_start), name="b0")(inp_emb_id)[:, 0, :]]
        else:
            init_b0 = []

        if self.seasonal:
            init_seas_emb = Embedding(1, self.seasonal_period, embeddings_initializer=RandomUniform(0.8, 1.2),
                                      name="s0")
            init_seas = [init_seas_emb(inp_emb_id)[:, 0, :]]
        else:
            init_seas = []

        rnncell = ESRNN(self.trend, self.seasonal, self.seasonal_period)
        rnn = RNN(rnncell, return_sequences=True, return_state=True)
        out_rnn = rnn(inp_y, initial_state=init_l0 + init_b0 + init_seas)

        if self.trend == "multiplicative":
            l0_b0 = init_l0[0] * init_b0[0]
        elif self.trend == "additive":
            l0_b0 = init_l0[0] + init_b0[0]
        else:
            l0_b0 = init_l0[0]

        if self.seasonal == "multiplicative":
            l0_b0_s0 = l0_b0 * init_seas[0][:, :1]
        elif self.seasonal == "additive":
            l0_b0_s0 = l0_b0 + init_seas[0][:, :1]
        else:
            l0_b0_s0 = l0_b0

        out = tf.keras.layers.concatenate([
            tf.math.reduce_sum(l0_b0_s0, axis=1)[:, None, None],
            out_rnn[0]
        ], axis=1)

        model = Model(inputs=[inp_y, inp_emb_id], outputs=out)
        model.compile(Adam(lr), "mse")

        # predictor also outputs final state for predicting out-of-sample
        predictor = Model(inputs=[inp_y, inp_emb_id], outputs=[out, out_rnn[1:]])

        # Assign initial seasonality weights
        if self.seasonal:
            init_seas_emb.set_weights([s0_start.reshape(init_seas_emb.get_weights()[0].shape)])

        return model, predictor
示例#30
0
def main():

    dataset = load_dataset()

    train_data = np.asarray(dataset['train']['data'])
    train_labels = dataset['train']['label']
    num_classes = len(np.unique(train_labels))

    test_data = np.asarray(dataset['test']['data'])
    test_labels = dataset['test']['label']

    train_labels = to_categorical(train_labels, num_classes=num_classes)
    test_labels = to_categorical(test_labels, num_classes=num_classes)

    generator = dataset['generator']
    fs_generator = dataset['fs_generator']
    generator_kwargs = {
        'batch_size': batch_size
    }

    print('reps : ', reps)
    name = 'mnist_' + fs_network + '_r_' + str(regularization)
    print(name)
    model_kwargs = {
        'nclasses': num_classes,
        'regularization': regularization
    }

    total_features = int(np.prod(train_data.shape[1:]))

    fs_filename = directory + fs_network + '_trained_model.h5'
    classifier_filename = directory + classifier_network + '_trained_model.h5'
    if not os.path.isdir(directory):
        os.makedirs(directory)
    if not os.path.exists(fs_filename) and warming_up:
        np.random.seed(1001)
        tf.set_random_seed(1001)
        model = getattr(network_models, fs_network)(input_shape=train_data.shape[1:], **model_kwargs)
        print('training_model')
        model.fit_generator(
            generator.flow(train_data, train_labels, **generator_kwargs),
            steps_per_epoch=train_data.shape[0] // batch_size, epochs=110,
            callbacks=[
                callbacks.LearningRateScheduler(scheduler())
            ],
            validation_data=(test_data, test_labels),
            validation_steps=test_data.shape[0] // batch_size,
            verbose=verbose
        )

        model.save(fs_filename)
        del model
        K.clear_session()

    for e2efs_class in e2efs_classes:
        nfeats = []
        accuracies = []
        times = []

        cont_seed = 0

        for factor in [.05, .1, .25, .5]:
            n_features = int(total_features * factor)
            n_accuracies = []
            n_times = []

            for r in range(reps):
                print('factor : ', factor, ' , rep : ', r)
                np.random.seed(cont_seed)
                tf.set_random_seed(cont_seed)
                cont_seed += 1
                mask = (np.std(train_data, axis=0) > 1e-3).astype(int).flatten()
                classifier = load_model(fs_filename) if warming_up else getattr(network_models, fs_network)(input_shape=train_data.shape[1:], **model_kwargs)
                e2efs_layer = e2efs_class(n_features, input_shape=train_data.shape[1:], kernel_initializer=initializers.constant(mask))
                model = e2efs_layer.add_to_model(classifier, input_shape=train_data.shape[1:])

                optimizer = custom_optimizers.E2EFS_Adam(e2efs_layer=e2efs_layer, lr=1e-3)  # optimizers.adam(lr=1e-2)
                model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['acc'])
                model.fs_layer = e2efs_layer
                model.classifier = classifier
                model.summary()
                start_time = time.time()
                model.fit_generator(
                    fs_generator.flow(train_data, train_labels, **generator_kwargs),
                    steps_per_epoch=train_data.shape[0] // batch_size, epochs=20000,
                    callbacks=[
                        E2EFSCallback(verbose=verbose)
                    ],
                    validation_data=(test_data, test_labels),
                    validation_steps=test_data.shape[0] // batch_size,
                    verbose=verbose
                )
                fs_rank = np.argsort(K.eval(model.heatmap))[::-1]
                mask = np.zeros(train_data.shape[1:])
                mask.flat[fs_rank[:n_features]] = 1.
                # mask = K.eval(model.fs_kernel).reshape(train_data.shape[1:])
                n_times.append(time.time() - start_time)
                print('nnz : ', np.count_nonzero(mask))
                del model
                K.clear_session()
                model = load_model(classifier_filename) if warming_up else getattr(network_models, classifier_network)(
                    input_shape=train_data.shape[1:], **model_kwargs)
                optimizer = optimizers.Adam(lr=1e-2)  # optimizers.adam(lr=1e-2)
                model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['acc'])
                model.fit_generator(
                    generator.flow(mask * train_data, train_labels, **generator_kwargs),
                    steps_per_epoch=train_data.shape[0] // batch_size, epochs=80,
                    callbacks=[
                        callbacks.LearningRateScheduler(scheduler()),
                    ],
                    validation_data=(mask * test_data, test_labels),
                    validation_steps=test_data.shape[0] // batch_size,
                    verbose=verbose
                )
                n_accuracies.append(model.evaluate(mask * test_data, test_labels, verbose=0)[-1])
                del model
                K.clear_session()
            print(
                'n_features : ', n_features, ', acc : ', n_accuracies, ', time : ', n_times
            )
            accuracies.append(n_accuracies)
            nfeats.append(n_features)
            times.append(n_times)

        output_filename = directory + fs_network + '_' + classifier_network + '_' + e2efs_class.__name__ + \
                          '_results_warming_' + str(warming_up) + '.json'

        try:
            with open(output_filename) as outfile:
                info_data = json.load(outfile)
        except:
            info_data = {}

        if name not in info_data:
            info_data[name] = []

        info_data[name].append(
            {
                'regularization': regularization,
                'reps': reps,
                'classification': {
                    'n_features': nfeats,
                    'accuracy': accuracies,
                    'times': times
                }
            }
        )

        with open(output_filename, 'w') as outfile:
            json.dump(info_data, outfile)