def __init__(self, model, optimizer, log_file_dir=None, data_properties=None): """ Init. method. :param log_file_dir: If this is not None, then the training performance is stored in that log file directory. :param model: The model used for training. :param optimizer: Optimizer to be used for the weight updates. """ self._data_properties = data_properties self._log_file_dir = log_file_dir self._optimizer = optimizer self._model = model self._tp_obj = TruePositives() self._tn_obj = TrueNegatives() self._fp_obj = FalsePositives() self._fn_obj = FalseNegatives() self._pre_obj = Precision() self._rec_obj = Recall() self._setup_changes = {'train': [], 'valid': []} self._loss_tt = {'train': [], 'valid': []} self._loss_ms = {'train': [], 'valid': []} self._loss_total = {'train': [], 'valid': []} self._acc = {'train': [], 'valid': []} self._tn = {'train': [], 'valid': []} self._tp = {'train': [], 'valid': []} self._fn = {'train': [], 'valid': []} self._fp = {'train': [], 'valid': []} self._rec = {'train': [], 'valid': []} self._pre = {'train': [], 'valid': []}
class ConfusionMatrixDerivedMetric(tf.keras.metrics.Metric): def __init__(self, f, name, **kwargs): super(ConfusionMatrixDerivedMetric, self).__init__(name=name, **kwargs) self.tp = TruePositives() self.tn = TrueNegatives() self.fn = FalseNegatives() self.fp = FalsePositives() self.f = f def update_state(self, y_true, y_pred, sample_weight=None): self.tp.update_state(y_true, y_pred, sample_weight=sample_weight) self.tn.update_state(y_true, y_pred, sample_weight=sample_weight) self.fp.update_state(y_true, y_pred, sample_weight=sample_weight) self.fn.update_state(y_true, y_pred, sample_weight=sample_weight) def reset_states(self): self.tp.reset_states() self.tn.reset_states() self.fp.reset_states() self.fn.reset_states() def result(self): return tf.reduce_sum( self.f(self.tp.result(), self.fn.result(), self.tn.result(), self.fp.result()))
def __init__(self, f, name, **kwargs): super(ConfusionMatrixDerivedMetric, self).__init__(name=name, **kwargs) self.tp = TruePositives() self.tn = TrueNegatives() self.fn = FalseNegatives() self.fp = FalsePositives() self.f = f
def build_triplet_classifier_model(extractor_model, dist_type='eucl', threshold=1.0): anchor_in = Input(shape=(224, 224, 3), name="anchor_in") anchor_out = extractor_model(anchor_in) compare_in = Input(shape=(224, 224, 3), name="compare_in") compare_out = extractor_model(compare_in) if dist_type == 'cos': dist = CosineDistance(name="dist")([anchor_out, compare_out]) else: dist = EuclidianDistanceSquared(name="dist")([anchor_out, compare_out]) model = Lambda(lambda x: tf.cast((x < threshold), tf.float32))(dist) model = Model([anchor_in, compare_in], model) model.compile(optimizer=Adamax(), loss=None, metrics=[ BinaryAccuracy(), Precision(), Recall(), TrueNegatives(), FalsePositives(), FalseNegatives(), TruePositives() ]) return model
def build_base_model(input_size): in_1 = Input(shape=(input_size, ), name="input_1") in_2 = Input(shape=(input_size, ), name="input_2") norm_1 = Lambda(lambda tensor: tf.norm(tensor, axis=1, keepdims=True), name="norm_input_1")(in_1) norm_2 = Lambda(lambda tensor: tf.norm(tensor, axis=1, keepdims=True), name="norm_input_2")(in_2) norm_mul = Multiply(name="multiply_norms")([norm_1, norm_2]) model = Multiply(name="pointwise_multiply")([in_1, in_2]) model = Lambda(lambda tensor: tf.reduce_sum(tensor, axis=1, keepdims=True), name="sum")(model) model = Lambda(lambda tensors: tf.divide(tensors[0], tensors[1]), name="divide")([model, norm_mul]) model = ValueMinusInput(1, name="one_minus_input")(model) model = LessThan(0.4)(model) model_out = Lambda(lambda tensor: tf.cast(tensor, tf.float32), name="cast")(model) model = Model([in_1, in_2], model_out) model.compile(loss=MeanSquaredError(), optimizer=SGD(), metrics=[ BinaryAccuracy(), Precision(), Recall(), TrueNegatives(), FalsePositives(), FalseNegatives(), TruePositives() ]) return model
def _compile_model(self): self.model.compile( optimizer=Adam(), loss=BinaryCrossentropy(), metrics=['accuracy', TruePositives(), TrueNegatives(), FalsePositives(), FalseNegatives(), AUC()] ) self.model.summary()
def train_model(self, themes_weight: ThemeWeights, dataset: TrainValidationDataset, voc_size: int, keras_callback: LambdaCallback): article_length = dataset.article_length theme_count = dataset.theme_count model = tf.keras.Sequential([ keras.layers.Embedding(input_dim=voc_size, input_length=article_length, output_dim=self.embedding_output_dim, mask_zero=True), Dropout(0.3), keras.layers.Conv1D(filters=64, kernel_size=3, input_shape=(voc_size, self.embedding_output_dim), activation=tf.nn.relu), #keras.layers.MaxPooling1D(3), #keras.layers.Bidirectional(keras.layers.LSTM(64)), keras.layers.GlobalAveragePooling1D(), Dropout(0.3), keras.layers.Dense(theme_count, activation=tf.nn.sigmoid) ]) model.compile(optimizer=tf.keras.optimizers.Adam(clipnorm=1), loss=WeightedBinaryCrossEntropy( themes_weight.weight_array()), metrics=[ AUC(multi_label=True), BinaryAccuracy(), TruePositives(), TrueNegatives(), FalseNegatives(), FalsePositives(), Recall(), Precision() ], run_eagerly=True) model.summary() self.__model__ = model if self.__plot_directory is not None: self.plot_model(self.__plot_directory) # Fix for https://github.com/tensorflow/tensorflow/issues/38988 model._layers = [ layer for layer in model._layers if not isinstance(layer, dict) ] callbacks = [ManualInterrupter(), keras_callback] model.fit(dataset.trainData, epochs=self.epochs, steps_per_epoch=dataset.train_batch_count, validation_data=dataset.validationData, validation_steps=dataset.validation_batch_count, callbacks=callbacks)
def get_custom_metrics(): custom_metrics: dict = { "precision": Precision(), "recall": Recall(), "true_positives": TruePositives(), "true_negatives": TrueNegatives(), "false_negatives": FalseNegatives(), "false_positives": FalsePositives() } return custom_metrics
def build_cos_model(input_size, cos_dist_lvl, n_neurons, n_layers, batch_norm=True, loss=MeanSquaredError(), optimizer=SGD(learning_rate=0.05, momentum=0.025)): in_1 = Input(shape=(input_size, ), name="input_1") in_2 = Input(shape=(input_size, ), name="input_2") if cos_dist_lvl == 0: model = Concatenate(name="concatenate")([in_1, in_2]) else: model = Multiply(name="pointwise_multiply")([in_1, in_2]) if cos_dist_lvl >= 2: norm_1 = Lambda( lambda tensor: tf.norm(tensor, axis=1, keepdims=True), name="norm_input_1")(in_1) norm_2 = Lambda( lambda tensor: tf.norm(tensor, axis=1, keepdims=True), name="norm_input_2")(in_2) norm_mul = Multiply(name="multiply_norms")([norm_1, norm_2]) model = Lambda(lambda tensors: tf.divide(tensors[0], tensors[1]), name="divide")([model, norm_mul]) if cos_dist_lvl >= 3: model = Lambda( lambda tensor: tf.reduce_sum(tensor, axis=1, keepdims=True), name="sum")(model) if cos_dist_lvl >= 4: model = ValueMinusInput(1, name="one_minus_input")(model) if batch_norm: model = BatchNormalization(name="input_normalization")(model) for i in range(n_layers): model = Dense(n_neurons, activation='sigmoid', name="dense_{}".format(i))(model) model_out = Dense(1, activation='sigmoid', name="classify")(model) model = Model([in_1, in_2], model_out) model.compile(loss=loss, optimizer=optimizer, metrics=[ BinaryAccuracy(), Precision(), Recall(), TrueNegatives(), FalsePositives(), FalseNegatives(), TruePositives() ]) return model
def build_model(self): with tf.name_scope('Model'): self.model = self.build() self.model.compile(optimizer=Adam(lr=self.learning_rate), loss=FocalLoss(alpha=.25, gamma=2), metrics=[ 'accuracy', f1, TrueNegatives(), FalseNegatives(), TruePositives(), FalsePositives() ]) print(self.model.summary())
def build_eucl_model(input_size, eucl_dist_lvl, n_neurons, n_layers, batch_norm=True, loss=MeanSquaredError(), optimizer=SGD(learning_rate=0.05, momentum=0.025)): in_1 = Input(shape=(input_size, ), name="input_1") in_2 = Input(shape=(input_size, ), name="input_2") if eucl_dist_lvl == 0: model = Concatenate(name="concatenate")([in_1, in_2]) else: model = Subtract(name="subtract")([in_1, in_2]) if eucl_dist_lvl >= 2: model = Lambda(lambda tensor: tf.square(tensor), name="square")(model) if eucl_dist_lvl >= 3: model = Lambda( lambda tensor: tf.reduce_sum(tensor, axis=1, keepdims=True), name="sum")(model) if eucl_dist_lvl >= 4: model = Lambda(lambda tensor: tf.sqrt(tensor), name="root")(model) if batch_norm: model = BatchNormalization(name="input_normalization")(model) for i in range(n_layers): model = Dense(n_neurons, activation='sigmoid', name="dense_{}".format(i))(model) model_out = Dense(1, activation='sigmoid', name="classify")(model) model = Model([in_1, in_2], model_out) model.compile(loss=loss, optimizer=optimizer, metrics=[ BinaryAccuracy(), Precision(), Recall(), TrueNegatives(), FalsePositives(), FalseNegatives(), TruePositives() ]) return model
def define_lstm(TOP_WORDS, max_sent_len): embedding_vector_length = 16 model = Sequential() num_neurons = 16 # Input layer model.add( Embedding(TOP_WORDS, embedding_vector_length, input_length=max_sent_len)) model.add(LSTM(16, return_sequences=True)) model.add(Dropout(0.4)) model.add(LSTM(16)) model.add(Dropout(0.4)) # model.add(Dense(units=num_neurons, # activation = 'sigmoid')) # model.add(Dropout(0.3)) model.add(Dense(units=num_neurons, activation='relu')) model.add(Dropout(0.4)) # Output layer model.add(Dense(1, activation='sigmoid')) metrics = [ FalseNegatives(name='fn'), FalsePositives(name='fp'), TrueNegatives(name='tn'), TruePositives(name='tp'), Precision(name='precision'), Recall(name='recall'), ] model.summary() model.compile(loss='binary_crossentropy', optimizer='adam', metrics=metrics) return model
def create_model_RNN_LSTM(optimizer='adam', units=200, activation='sigmoid', EMBEDDING_DIM=25, max_length=37, vocab_size=350, hidden_dims=1, hidden_dim_units=25): print("Parameters", "units", units, "activation", activation, "EMBEDDING_DIM", EMBEDDING_DIM, "max_length", max_length, "vocab_size", vocab_size, " hidden_dims ", hidden_dims) keras_eval_metric = [[ TruePositives(name='tp'), FalsePositives(name='fp'), TrueNegatives(name='tn'), FalseNegatives(name='fn'), BinaryAccuracy(name='accuracy'), Precision(name='precision'), Recall(name='recall'), AUC(name='auc'), ]] model = Sequential() model.add(Embedding(vocab_size, EMBEDDING_DIM, input_length=max_length)) model.add( LSTM(units=hidden_dim_units, dropout=0.2, recurrent_dropout=0.2, activation=activation)) for i in range(hidden_dims): model.add(Dense(hidden_dim_units)) model.add(Activation(activation)) model.add(Dropout(0.2)) model.add(Dense(1)) model.add(Activation(activation)) model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=keras_eval_metric) print("\n\n", model.summary(), "\n\n", model.get_config(), "\n\n") return model
def define_mlp_model(n_input): """ define the multi-layer-perceptron neural network Args: n_input(int): number of features Returns: a defined mlp model, not fitted """ model = Sequential() num_neurons = 256 #256 # hidden layer model.add( Dense(units=num_neurons, input_dim=n_input, kernel_initializer='he_uniform', activation='sigmoid')) model.add(Dense(units=num_neurons * 2, activation='sigmoid')) model.add(Dropout(0.3)) model.add(Dense(units=num_neurons * 2, activation='sigmoid')) model.add(Dropout(0.3)) # output layer model.add(Dense(units=1, activation='sigmoid')) model.summary() metrics = [ FalseNegatives(name='fn'), FalsePositives(name='fp'), TrueNegatives(name='tn'), TruePositives(name='tp'), Precision(name='precision'), Recall(name='recall'), ] #sgd = SGD(lr=0.001, decay=1e-7, momentum=.9) adam = Adam(1e-2) model.compile(loss='binary_crossentropy', optimizer=adam, metrics=metrics) return model
def perf_measure(y_te, y_pred): TP = np.zeros(8) FN = np.zeros(8) FP = np.zeros(8) TN = np.zeros(8) for i in range(y_pred.shape[1]): tp = TruePositives() fn = FalseNegatives() fp = FalsePositives() tn = TrueNegatives() tp.update_state(y_te[:,i], y_pred[:,i]) fn.update_state(y_te[:,i], y_pred[:,i]) fp.update_state(y_te[:,i], y_pred[:,i]) tn.update_state(y_te[:,i], y_pred[:,i]) TP[i] = tp.result().numpy() FN[i] = fn.result().numpy() FP[i] = fp.result().numpy() TN[i] = tn.result().numpy() tp.reset_states() fn.reset_states() fp.reset_states() tn.reset_states() return [TP, TN, FN, FP]
def build_model_hpconfig(args): """ Description: Building models for hyperparameter Tuning Args: args: input arguments Returns: model (keras model) """ #parsing and assigning hyperparameter variables from argparse conv1_filters = int(args.conv1_filters) conv2_filters = int(args.conv2_filters) conv3_filters = int(args.conv3_filters) window_size = int(args.window_size) kernel_regularizer = args.kernel_regularizer max_pool_size = int(args.pool_size) conv_dropout = float(args.conv_dropout) conv1d_initializer = args.conv_weight_initializer recurrent_layer1 = int(args.recurrent_layer1) recurrent_layer2 = int(args.recurrent_layer2) recurrent_dropout = float(args.recurrent_dropout) after_recurrent_dropout = float(args.after_recurrent_dropout) recurrent_recurrent_dropout = float(args.recurrent_recurrent_dropout) recurrent_initalizer = args.recurrent_weight_initializer optimizer = args.optimizer learning_rate = float(args.learning_rate) bidirection = args.bidirection recurrent_layer = str(args.recurrent_layer) dense_dropout = float(args.dense_dropout) dense_1 = int(args.dense_1) dense_initializer = args.dense_weight_initializer train_data = str(args.train_input_data) #main input is the length of the amino acid in the protein sequence (700,) main_input = Input(shape=(700, ), dtype='float32', name='main_input') #Embedding Layer used as input to the neural network embed = Embedding(output_dim=21, input_dim=21, input_length=700)(main_input) #secondary input is the protein profile features auxiliary_input = Input(shape=(700, 21), name='aux_input') #get shape of input layers print("Protein Sequence shape: ", main_input.get_shape()) print("Protein Profile shape: ", auxiliary_input.get_shape()) #concatenate input layers concat = Concatenate(axis=-1)([embed, auxiliary_input]) #3x1D Convolutional Hidden Layers with BatchNormalization, Dropout and MaxPooling conv_layer1 = Conv1D(conv1_filters, window_size, kernel_regularizer=kernel_regularizer, padding='same', kernel_initializer=conv1d_initializer)(concat) batch_norm = BatchNormalization()(conv_layer1) conv_act = activations.relu(batch_norm) conv_dropout = Dropout(conv_dropout)(conv_act) max_pool_1D_1 = MaxPooling1D(pool_size=max_pool_size, strides=1, padding='same')(conv_dropout) conv_layer2 = Conv1D(conv2_filters, window_size, padding='same', kernel_initializer=conv1d_initializer)(concat) batch_norm = BatchNormalization()(conv_layer2) conv_act = activations.relu(batch_norm) conv_dropout = Dropout(conv_dropout)(conv_act) max_pool_1D_2 = MaxPooling1D(pool_size=max_pool_size, strides=1, padding='same')(conv_dropout) conv_layer3 = Conv1D(conv3_filters, window_size, kernel_regularizer=kernel_regularizer, padding='same', kernel_initializer=conv1d_initializer)(concat) batch_norm = BatchNormalization()(conv_layer3) conv_act = activations.relu(batch_norm) conv_dropout = Dropout(conv_dropout)(conv_act) max_pool_1D_3 = MaxPooling1D(pool_size=max_pool_size, strides=1, padding='same')(conv_dropout) #concat pooling layers conv_features = Concatenate(axis=-1)( [max_pool_1D_1, max_pool_1D_2, max_pool_1D_3]) print("Shape of convolutional output: ", conv_features.get_shape()) conv_features = Dense(600, activation='relu')(conv_features) ######## Recurrent Layers ######## if (recurrent_layer == 'lstm'): if (bidirection): print('Entering LSTM Layers') #Creating Bidirectional LSTM layers lstm_f1 = Bidirectional( LSTM(recurrent_layer1, return_sequences=True, activation='tanh', recurrent_activation='sigmoid', dropout=recurrent_dropout, recurrent_dropout=recurrent_recurrent_dropout, kernel_initializer=recurrent_initalizer))(conv_features) lstm_f2 = Bidirectional( LSTM(recurrent_layer2, return_sequences=True, activation='tanh', recurrent_activation='sigmoid', dropout=recurrent_dropout, recurrent_dropout=recurrent_recurrent_dropout, kernel_initializer=recurrent_initalizer))(lstm_f1) #concatenate LSTM with convolutional layers concat_features = Concatenate(axis=-1)( [lstm_f1, lstm_f2, conv_features]) concat_features = Dropout(after_recurrent_dropout)(concat_features) print('Concatenated LSTM layers') else: #Creating unidirectional LSTM Layers lstm_f1 = LSTM( recurrent_layer1, return_sequences=True, activation='tanh', recurrent_activation='sigmoid', dropout=recurrent_dropout, recurrent_dropout=recurrent_recurrent_dropout, kernel_initializer=recurrent_initalizer)(conv_features) lstm_f2 = LSTM(recurrent_layer2, return_sequences=True, activation='tanh', recurrent_activation='sigmoid', dropout=recurrent_dropout, recurrent_dropout=recurrent_recurrent_dropout, kernel_initializer=recurrent_initalizer)(lstm_f1) #concatenate LSTM with convolutional layers concat_features = Concatenate(axis=-1)( [lstm_f1, lstm_f2, conv_features]) concat_features = Dropout(after_recurrent_dropout)(concat_features) elif (recurrent_layer == 'gru'): if (bidirection): #Creating Bidirectional GRU layers gru_f1 = Bidirectional( GRU(recurrent_layer1, return_sequences=True, activation='tanh', recurrent_activation='sigmoid', dropout=recurrent_dropout, recurrent_dropout=recurrent_recurrent_dropout, kernel_initializer=recurrent_initalizer))(conv_features) gru_f2 = Bidirectional( GRU(recurrent_layer2, return_sequences=True, activation='tanh', recurrent_activation='sigmoid', dropout=recurrent_dropout, recurrent_dropout=recurrent_recurrent_dropout, kernel_initializer=recurrent_initalizer))(gru_f1) #concatenate LSTM with convolutional layers concat_features = Concatenate(axis=-1)( [gru_f1, gru_f2, conv_features]) concat_features = Dropout(after_recurrent_dropout)(concat_features) else: #Creating unidirectional GRU Layers gru_f1 = GRU( recurrent_layer1, return_sequences=True, activation='tanh', recurrent_activation='sigmoid', dropout=recurrent_dropout, recurrent_dropout=recurrent_recurrent_dropout, kernel_initializer=recurrent_initalizer)(conv_features) gru_f2 = GRU(recurrent_layer1, return_sequences=True, activation='tanh', recurrent_activation='sigmoid', dropout=recurrent_dropout, recurrent_dropout=recurrent_recurrent_dropout, kernel_initializer=recurrent_initalizer)(gru_f1) #concatenate LSTM with convolutional layers concat_features = Concatenate(axis=-1)( [gru_f1, gru_f2, conv_features]) concat_features = Dropout(after_recurrent_dropout)(concat_features) else: print('Only LSTM and GRU recurrent layers are used in this model') return #Dense Fully-Connected DNN layers fc_dense1 = Dense(dense_1, activation='relu', kernel_initializer=dense_initializer)(concat_features) fc_dense1_dropout = Dropout(dense_dropout)(fc_dense1) #Final Output layer with 8 nodes for the 8 output classifications main_output = Dense(8, activation='softmax', name='main_output')(fc_dense1_dropout) #create model from inputs and outputs model = Model(inputs=[main_input, auxiliary_input], outputs=[main_output]) #Set optimizer to be used with the model, default is Adam if optimizer == 'adam': optimizer = Adam(lr=learning_rate, name='adam') elif optimizer == 'sgd': optimizer = SGD(lr=0.01, momentum=0.0, nesterov=False, name='SGD') elif optimizer == 'rmsprop': optimizer = RMSprop(learning_rate=learning_rate, centered=True, name='RMSprop') elif optimizer == 'adagrad': optimizer = Adagrad(learning_rate=learning_rate, name='Adagrad') elif optimizer == 'adamax': optimizer = Adamax(learning_rate=learning_rate, name='Adamax') else: optimizer = 'adam' optimizer = Adam(lr=learning_rate, name='adam') #compile model using optimizer and the cateogorical crossentropy loss function model.compile(optimizer=optimizer, loss={'main_output': 'categorical_crossentropy'}, metrics=[ 'accuracy', MeanSquaredError(), FalseNegatives(), FalsePositives(), TrueNegatives(), TruePositives(), MeanAbsoluteError(), Recall(), Precision() ]) #get summary of model including its layers and num parameters model.summary() return model
def generate_compiled_segmentation_model( model_name, model_parameters, num_classes, loss, optimizer, weights_to_load=None, optimizing_threshold_class_metric=None, optimizing_class_id=None, optimizing_input_threshold=None, optimized_class_thresholds=None): # These are the only model, loss, and optimizer currently supported assert model_name == 'Unet' assert loss == 'cross_entropy' assert optimizer == 'adam' loss_fn = BinaryCrossentropyL() all_metrics = [ ] # one-hot versions are generally preferred for given metric # make first metric a copy of loss, to continually verify `val_loss` is correct if isinstance(loss_fn, BinaryCrossentropyL): all_metrics.append(BinaryCrossentropyM(name='binary_ce_metric')) else: all_metrics.append(CategoricalCrossentropyM(name='categ_ce_metric')) # standard thresholded version (default threshold is 0.5) also kept below, in case it's desired in certain scenario for class_num in range(num_classes + 1): if class_num == 0 and optimizing_threshold_class_metric is None: # all class metrics # note, `loss_fn` for all classes placed before `all_metrics` in lineup of command window metrics and plots if not isinstance(loss_fn, BinaryCrossentropyL): all_metrics.extend([CategoricalCELoss()]) all_metrics[1].name = str('categ_cross_entropy_sm') all_metrics.extend([ AccuracyTfKeras(), # OneHotAccuracyTfKeras(), # `global_threshold` built-in ClassBinaryAccuracyTfKeras(thresholds=global_threshold), # OneHotClassBinaryAccuracyTfKeras(thresholds=global_threshold), ClassBinaryAccuracySM(threshold=global_threshold), # OneHotClassBinaryAccuracySM(threshold=global_threshold), BinaryAccuracy(threshold=global_threshold), CategoricalAccuracy(), FalseNegatives(name='false_neg', thresholds=global_threshold), # OneHotFalseNegatives(name='false_neg_1H', thresholds=global_threshold), TrueNegatives(name='true_neg', thresholds=global_threshold), # OneHotTrueNegatives(name='true_neg_1H', thresholds=global_threshold), FalsePositives(name='false_pos', thresholds=global_threshold), # OneHotFalsePositives(name='false_pos_1H', thresholds=global_threshold), TruePositives(name='true_pos', thresholds=global_threshold), # OneHotTruePositives(name='true_pos_1H', thresholds=global_threshold), Recall(name='recall', thresholds=global_threshold), # OneHotRecall(name='recall_1H', thresholds=global_threshold), Precision(name='precision', thresholds=global_threshold), # OneHotPrecision(name='precision_1H', thresholds=global_threshold), FBetaScore(name='f1_score', beta=1, thresholds=global_threshold), # OneHotFBetaScore(name='f1_score_1H', beta=1, thresholds=global_threshold), IoUScore(name='iou_score', thresholds=global_threshold), # OneHotIoUScore(name='iou_score_1H', thresholds=global_threshold) ]) elif class_num == 0 and optimizing_threshold_class_metric is not None: # all class metrics continue else: # per class metrics if optimizing_threshold_class_metric is not None: class_threshold = optimizing_input_threshold class_num = optimizing_class_id + 1 elif optimized_class_thresholds is None: class_threshold = global_threshold else: class_threshold = optimized_class_thresholds[str( 'class' + str(class_num - 1))] all_metrics.append(CategoricalCELoss(class_indexes=class_num - 1)) all_metrics[-1].name = str('class' + str(class_num - 1) + '_binary_cross_entropy') all_metrics.append( ClassBinaryAccuracySM(name=str('class' + str(class_num - 1) + '_binary_accuracy_sm'), class_indexes=class_num - 1, threshold=class_threshold)) all_metrics.append( ClassBinaryAccuracyTfKeras( name=str('class' + str(class_num - 1) + '_binary_accuracy_tfkeras'), class_id=class_num - 1, thresholds=class_threshold)) all_metrics.append( IoUScore(name=str('class' + str(class_num - 1) + '_iou_score'), class_id=class_num - 1, thresholds=class_threshold)) all_metrics.append( FBetaScore(name=str('class' + str(class_num - 1) + '_f1_score'), class_id=class_num - 1, beta=1, thresholds=class_threshold)) all_metrics.append( Precision(name=str('class' + str(class_num - 1) + '_precision'), class_id=class_num - 1, thresholds=class_threshold)) all_metrics.append( Recall(name=str('class' + str(class_num - 1) + '_recall'), class_id=class_num - 1, thresholds=class_threshold)) if optimizing_threshold_class_metric is not None: break if num_classes == 1: break # strategy = tf.distribute.MirroredStrategy() # with strategy.scope(): model = Unet(input_shape=(None, None, 1), classes=num_classes, **model_parameters) model.compile(optimizer=Adam(), loss=loss_fn, metrics=all_metrics) if weights_to_load: model.load_weights(weights_to_load) if optimizing_threshold_class_metric is None: print(model.summary()) return model
for w in words: bag.append(1) if w in pattern_words else bag.append(0) output_row = list(output_empty) output_row[classes.index(doc[1])] = 1 training.append([bag, output_row]) random.shuffle(training) training = np.array(training) train_x = list(training[:,0]) train_y = list(training[:,1]) print("Training data created") x_train, x_test, y_train, y_test = train_test_split(train_x, train_y, test_size=0.33) model = Sequential() model.add(Dense(128, input_shape=(len(train_x[0]),), activation='relu')) model.add(Dropout(0.5)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(len(train_y[0]), activation='softmax')) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['acc', TruePositives(), TrueNegatives(), FalsePositives(), FalseNegatives()]) history = model.fit(np.array(x_train), np.array(y_train), validation_data=(x_test, y_test), epochs=300, batch_size=5, verbose=1) model.save('chatbot_model.h5', history) print("model created")
'id': [], 'rating': [], 'text': [], 'time_created': [], 'url': [] } FULL_REVIEWS_DICT = {'rating': [], 'text': []} ''' Modeling ''' # VOCAB_SIZE = 10386 # VOCAB_SIZE = 9566 VOCAB_SIZE = 27886 METRICS = [ TruePositives(name='tp'), FalsePositives(name='fp'), TrueNegatives(name='tn'), FalseNegatives(name='fn'), BinaryAccuracy(name='accuracy'), Precision(name='precision'), Recall(name='recall'), AUC(name='auc') ] PARAMS = {'batch_size': '', 'epochs': ''} PREDICTIONS = {}
def build_model(): #main input is the length of the amino acid in the protein sequence (700,) main_input = Input(shape=(700, ), dtype='float32', name='main_input') #Embedding Layer used as input to the neural network embed = Embedding(output_dim=21, input_dim=21, input_length=700)(main_input) #secondary input is the protein profile features auxiliary_input = Input(shape=(700, 21), name='aux_input') #get shape of input layers print("Protein Sequence shape: ", main_input.get_shape()) print("Protein Profile shape: ", auxiliary_input.get_shape()) #concatenate 2 input layers concat = Concatenate(axis=-1)([embed, auxiliary_input]) #3x1D Convolutional Hidden Layers with BatchNormalization and MaxPooling conv_layer1 = Convolution1D(64, 7, kernel_regularizer="l2", padding='same')(concat) batch_norm = BatchNormalization()(conv_layer1) conv2D_act = activations.relu(batch_norm) conv_dropout = Dropout(0.5)(conv2D_act) max_pool_2D_1 = MaxPooling1D(pool_size=2, strides=1, padding='same')(conv_dropout) conv_layer2 = Convolution1D(128, 7, padding='same')(concat) batch_norm = BatchNormalization()(conv_layer2) conv2D_act = activations.relu(batch_norm) conv_dropout = Dropout(0.5)(conv2D_act) max_pool_2D_2 = MaxPooling1D(pool_size=2, strides=1, padding='same')(conv_dropout) conv_layer3 = Convolution1D(256, 7, kernel_regularizer="l2", padding='same')(concat) batch_norm = BatchNormalization()(conv_layer3) conv2D_act = activations.relu(batch_norm) conv_dropout = Dropout(0.5)(conv2D_act) max_pool_2D_3 = MaxPooling1D(pool_size=2, strides=1, padding='same')(conv_dropout) #concatenate convolutional layers conv_features = Concatenate(axis=-1)( [max_pool_2D_1, max_pool_2D_2, max_pool_2D_3]) #Dense Fully-Connected DNN layers dense_1 = Dense(300, activation='relu')(conv_features) dense_1_dropout = Dropout(dense_dropout)(dense_1) dense_2 = Dense(100, activation='relu')(dense_1_dropout) dense_2_dropout = Dropout(dense_dropout)(dense_2) dense_3 = Dense(50, activation='relu')(dense_2_dropout) dense_3_dropout = Dropout(dense_dropout)(dense_3) dense_4 = Dense(16, activation='relu')(dense_3_dropout) dense_4_dropout = Dropout(dense_dropout)(dense_4) #Final Dense layer with 8 nodes for the 8 output classifications main_output = Dense(8, activation='softmax', name='main_output')(protein_features_dropout) #create model from inputs and outputs model = Model(inputs=[main_input, auxiliary_input], outputs=[main_output]) #use Adam optimizer adam = Adam(lr=lr) #Adam is fast, but tends to over-fit #SGD is low but gives great results, sometimes RMSProp works best, SWA can easily improve quality, AdaTune #compile model using adam optimizer and the cateogorical crossentropy loss function model.compile(optimizer=adam, loss={'main_output': 'categorical_crossentropy'}, metrics=[ 'accuracy', MeanSquaredError(), FalseNegatives(), FalsePositives(), TrueNegatives(), TruePositives(), MeanAbsoluteError(), Recall(), Precision() ]) model.summary() #set earlyStopping and checkpoint callback earlyStopping = EarlyStopping(monitor='val_loss', patience=5, verbose=1, mode='min') checkpoint_path = "/3x1DConv_dnn_" + str(datetime.date( datetime.now())) + ".h5" checkpointer = ModelCheckpoint(filepath=checkpoint_path, verbose=1, save_best_only=True, monitor='val_acc', mode='max') return model
def build_model(): #main input is the length of the amino acid in the protein sequence (700,) main_input = Input(shape=(700, ), dtype='float32', name='main_input') #Embedding Layer used as input to the neural network embed = Embedding(output_dim=21, input_dim=21, input_length=700)(main_input) #secondary input is the protein profile features auxiliary_input = Input(shape=(700, 21), name='aux_input') #auxiliary_input = Masking(mask_value=0)(auxiliary_input) #get shape of input layers print("Protein Sequence shape: ", main_input.get_shape()) print("Protein Profile shape: ", auxiliary_input.get_shape()) #concatenate 2 input layers concat = Concatenate(axis=-1)([embed, auxiliary_input]) ######## Recurrent Bi-Directional Long-Short-Term-Memory Layers ######## lstm_f1 = Bidirectional( LSTM(400, return_sequences=True, activation='tanh', recurrent_activation='sigmoid', dropout=0.5, recurrent_dropout=0.5))(conv_features) lstm_f2 = Bidirectional( LSTM(300, return_sequences=True, activation='tanh', recurrent_activation='sigmoid', dropout=0.5, recurrent_dropout=0.5))(lstm_f1) #concatenate LSTM with convolutional layers concat_features = Concatenate(axis=-1)([lstm_f1, lstm_f2, conv_features]) concat_features = Dropout(0.4)(concat_features) #Dense Fully-Connected DNN layers dense_1 = Dense(300, activation='relu')(conv_features) dense_1_dropout = Dropout(dense_dropout)(dense_1) dense_2 = Dense(100, activation='relu')(dense_1_dropout) dense_2_dropout = Dropout(dense_dropout)(dense_2) dense_3 = Dense(50, activation='relu')(dense_2_dropout) dense_3_dropout = Dropout(dense_dropout)(dense_3) dense_4 = Dense(16, activation='relu')(dense_3_dropout) dense_4_dropout = Dropout(dense_dropout)(dense_4) #Final Dense layer with 8 nodes for the 8 output classifications main_output = Dense(8, activation='softmax', name='main_output')(dense_4_dropout) #create model from inputs and outputs model = Model(inputs=[main_input, auxiliary_input], outputs=[main_output]) #use Adam optimizer adam = Adam(lr=0.0003) #Adam is fast, but tends to over-fit #SGD is low but gives great results, sometimes RMSProp works best, SWA can easily improve quality, AdaTune #compile model using adam optimizer and the cateogorical crossentropy loss function model.compile(optimizer=adam, loss={'main_output': 'categorical_crossentropy'}, metrics=[ 'accuracy', MeanSquaredError(), FalseNegatives(), FalsePositives(), TrueNegatives(), TruePositives(), MeanAbsoluteError(), Recall(), Precision() ]) model.summary() #set earlyStopping and checkpoint callback earlyStopping = EarlyStopping(monitor='val_loss', patience=5, verbose=1, mode='min') checkpoint_path = "/blstm_3x1Dconv_dnn_" + str( datetime.date(datetime.now())) + ".h5" checkpointer = ModelCheckpoint(filepath=checkpoint_path, verbose=1, save_best_only=True, monitor='val_acc', mode='max') return model
def build_model(): """ Description: Building DCBGRU model Args: None Returns: None """ #main input is the length of the amino acid in the protein sequence (700,) main_input = Input(shape=(700, ), dtype='float32', name='main_input') #Embedding Layer used as input to the neural network embed = Embedding(output_dim=21, input_dim=21, input_length=700)(main_input) #secondary input is the protein profile features auxiliary_input = Input(shape=(700, 21), name='aux_input') #get shape of input layers print("Protein Sequence shape: ", main_input.get_shape()) print("Protein Profile shape: ", auxiliary_input.get_shape()) #concatenate 2 input layers concat = Concatenate(axis=-1)([embed, auxiliary_input]) #3x1D Convolutional Hidden Layers with BatchNormalization, Dropout and MaxPooling conv_layer1 = Conv1D(16, 7, kernel_regularizer="l2", padding='same')(concat) batch_norm = BatchNormalization()(conv_layer1) conv_act = activations.relu(batch_norm) conv_dropout = Dropout(0.2)(conv_act) max_pool_1D_1 = MaxPooling1D(pool_size=2, strides=1, padding='same')(conv_dropout) conv_layer2 = Conv1D(32, 7, padding='same')(concat) batch_norm = BatchNormalization()(conv_layer2) conv_act = activations.relu(batch_norm) conv_dropout = Dropout(0.2)(conv_act) max_pool_1D_2 = MaxPooling1D(pool_size=2, strides=1, padding='same')(conv_dropout) conv_layer3 = Conv1D(64, 7, kernel_regularizer="l2", padding='same')(concat) batch_norm = BatchNormalization()(conv_layer3) conv_act = activations.relu(batch_norm) conv_dropout = Dropout(0.2)(conv_act) max_pool_1D_3 = MaxPooling1D(pool_size=2, strides=1, padding='same')(conv_dropout) ############################################################################################ #concatenate convolutional layers conv_features = Concatenate(axis=-1)( [max_pool_1D_1, max_pool_1D_2, max_pool_1D_3]) #dense layer before GRU's gru_dense = Dense(600, activation='relu', name="after_cnn_dense")(conv_features) ######## Recurrent Unidirectional Long-Short-Term-Memory Layers ######## gru_f1 = Bidirectional( GRU(200, return_sequences=True, activation='tanh', recurrent_activation='sigmoid', dropout=0.5, recurrent_dropout=0.5))(gru_dense) gru_f2 = Bidirectional( GRU(200, return_sequences=True, activation='tanh', recurrent_activation='sigmoid', dropout=0.5, recurrent_dropout=0.5))(gru_f1) ############################################################################################ #concatenate GRU with convolutional layers concat_features = Concatenate(axis=-1)([gru_f1, gru_f2, gru_dense]) concat_features = Dropout(0.4)(concat_features) #Dense Fully-Connected DNN layers after_gru_dense = Dense(600, activation='relu')(concat_features) after_gru_dense_dropout = Dropout(0.3)(after_gru_dense) #Final Dense layer with 8 nodes for the 8 output classifications main_output = Dense(8, activation='softmax', name='main_output')(after_gru_dense_dropout) #create model from inputs and outputs model = Model(inputs=[main_input, auxiliary_input], outputs=[main_output]) #use Adam optimizer adam = Adam(lr=0.00015) #compile model using adam optimizer and the cateogorical crossentropy loss function model.compile(optimizer=adam, loss={'main_output': 'categorical_crossentropy'}, metrics=[ 'accuracy', MeanSquaredError(), FalseNegatives(), FalsePositives(), TrueNegatives(), TruePositives(), MeanAbsoluteError(), Recall(), Precision() ]) #print model summary model.summary() return model
def build_model(): """ Description: Building PSP-CD model Args: None Returns: None """ #main input is the length of the amino acid in the protein sequence (700,) main_input = Input(shape=(700, ), dtype='float32', name='main_input') #Embedding Layer used as input to the neural network embed = Embedding(output_dim=21, input_dim=21, input_length=700)(main_input) #secondary input is the protein profile features auxiliary_input = Input(shape=(700, 21), name='aux_input') #get shape of input layers print("Protein Sequence shape: ", main_input.get_shape()) print("Protein Profile shape: ", auxiliary_input.get_shape()) #concatenate 2 input layers concat_features = Concatenate(axis=-1)([embed, auxiliary_input]) ############################################################################################ #Dense Fully-Connected DNN layers dense_1 = Dense(512, activation='relu')(concat_features) dense_1_dropout = Dropout(0.3)(dense_1) dense_2 = Dense(256, activation='relu')(dense_1_dropout) dense_2_dropout = Dropout(0.3)(dense_2) dense_3 = Dense(128, activation='relu')(dense_2_dropout) dense_3_dropout = Dropout(0.3)(dense_3) dense_4 = Dense(64, activation='relu')(dense_3_dropout) dense_4_dropout = Dropout(0.3)(dense_4) dense_5 = Dense(32, activation='relu')(dense_4_dropout) dense_5_dropout = Dropout(0.3)(dense_5) dense_6 = Dense(16, activation='relu')(dense_5_dropout) dense_6_dropout = Dropout(0.3)(dense_6) #Final Dense layer with 8 nodes for the 8 output classifications main_output = Dense(8, activation='softmax', name='main_output')(dense_6_dropout) #create model from inputs and outputs model = Model(inputs=[main_input, auxiliary_input], outputs=[main_output]) #use Adam optimizer adam = Adam(lr=0.00015) #compile model using adam optimizer and the cateogorical crossentropy loss function model.compile(optimizer=adam, loss={'main_output': 'categorical_crossentropy'}, metrics=[ 'accuracy', MeanSquaredError(), FalseNegatives(), FalsePositives(), TrueNegatives(), TruePositives(), MeanAbsoluteError(), Recall(), Precision() ]) #print model summary model.summary() return model
def build_model(): """ Description: Building dummy model Args: None Returns: None """ print("Building dummy model....") #main input is the length of the amino acid in the protein sequence (700,) main_input = Input(shape=(700, ), dtype='float32', name='main_input') #Embedding Layer used as input to the neural network embed = Embedding(output_dim=21, input_dim=21, input_length=700)(main_input) #secondary input is the protein profile features auxiliary_input = Input(shape=(700, 21), name='aux_input') #get shape of input layers print("Protein Sequence shape: ", main_input.get_shape()) print("Protein Profile shape: ", auxiliary_input.get_shape()) #concatenate 2 input layers concat = Concatenate(axis=-1)([embed, auxiliary_input]) ######## 1x1D-Convolutional Layers with BatchNormalization, Dropout and MaxPooling ######## conv_layer1 = Conv1D(16, 7, kernel_regularizer="l2", padding='same')(concat) batch_norm = BatchNormalization()(conv_layer1) # conv2D_act = activations.relu(batch_norm) conv2D_act = ReLU()(batch_norm) conv_dropout = Dropout(0.2)(conv2D_act) ############################################################################################ #Final Dense layer with 8 nodes for the 8 output classifications main_output = Dense(8, activation='softmax', name='main_output')(conv_dropout) #create model from inputs and outputs model = Model(inputs=[main_input, auxiliary_input], outputs=[main_output]) #use Adam optimizer adam = Adam(lr=0.00015) #compile model using adam optimizer and the cateogorical crossentropy loss function model.compile(optimizer=adam, loss={'main_output': 'categorical_crossentropy'}, metrics=[ 'accuracy', MeanSquaredError(), FalseNegatives(), FalsePositives(), TrueNegatives(), TruePositives(), MeanAbsoluteError(), Recall(), Precision(), AUC() ]) #print model summary model.summary() return model
def main(): args = cmd_parser() if_fast_run = False print(f"TensorFlow version: {tf.__version__}.") print(f"Keras version: {keras.__version__}.") print("If in eager mode: ", tf.executing_eagerly()) assert tf.__version__[0] == "2" model_type = "three_conv2d_net" # data path competition_name = "dogs-vs-cats-redux-kernels-edition" data_dir = os.path.expanduser(f"~/.kaggle/competitions/{competition_name}") # experiment time date_time = datetime.now().strftime("%Y%m%d-%H%M%S") ckpt_dir = os.path.expanduser( f"~/Documents/DeepLearningData/{competition_name}/ckpts/{model_type}/{date_time}" ) log_dir = os.path.expanduser( f"~/Documents/DeepLearningData/{competition_name}/logs/{model_type}/{date_time}" ) makedir_exist_ok(ckpt_dir) makedir_exist_ok(log_dir) # Input parameters IMAGE_WIDTH = 128 IMAGE_HEIGHT = 128 IMAGE_SIZE = (IMAGE_WIDTH, IMAGE_HEIGHT) IMAGE_CHANNELS = 3 input_shape = (IMAGE_WIDTH, IMAGE_HEIGHT, IMAGE_CHANNELS) # Create model metrics = [ TruePositives(name='tp'), # thresholds=0.5 FalsePositives(name='fp'), TrueNegatives(name='tn'), FalseNegatives(name='fn'), BinaryAccuracy(name='accuracy'), # AUC0(name='auc_cat_0'), # 以 good 为 positive 的 AUC AUC(name='auc_dog_1') # 以 bad 为 positive 的 AUC ] model = three_conv2d_net(input_shape=input_shape, metrics=metrics) model.summary() earlystop = EarlyStopping(patience=10) learning_rate_reduction = ReduceLROnPlateau(monitor='val_accuracy', patience=2, verbose=1, factor=0.5, min_lr=0.00001) model_name = "%s-epoch-{epoch:02d}-val_accuracy-{val_accuracy:.4f}.h5" % model_type filepath = os.path.join(ckpt_dir, model_name) checkpoint = ModelCheckpoint(filepath=filepath, monitor="val_accuracy", verbose=1, period=1) callbacks = [earlystop, learning_rate_reduction, checkpoint] # Prepare DataFrame filenames = os.listdir(os.path.join(data_dir, "train")) random.shuffle(filenames) categories = [] for filename in filenames: category = filename.split('.')[0] if category == 'dog': categories.append(1) elif category == 'cat': categories.append(0) df = pd.DataFrame({'filename': filenames, 'category': categories}) df["category"] = df["category"].replace({0: 'cat', 1: 'dog'}) # Show sample image # sample = np.random.choice(filenames) # image = load_img("./data/train/"+sample) # plt.imshow(image) # plt.show() """ 这里用来自动划分 train 集和 val 集 """ train_df, validate_df = train_test_split(df, test_size=0.20, random_state=42) train_df = train_df.reset_index(drop=True) validate_df = validate_df.reset_index(drop=True) # train_df['category'].value_counts().plot.bar() total_train = train_df.shape[0] total_validate = validate_df.shape[0] classes = ["cat", "dog"] # Traning Generator train_datagen = ImageDataGenerator(rotation_range=15, rescale=1. / 255, shear_range=0.1, zoom_range=0.2, horizontal_flip=True, width_shift_range=0.1, height_shift_range=0.1) train_generator = train_datagen.flow_from_dataframe( train_df, os.path.join(data_dir, "train"), x_col='filename', y_col='category', target_size=IMAGE_SIZE, class_mode='categorical', batch_size=args.batch_size) # Validation Generator validation_datagen = ImageDataGenerator(rescale=1. / 255) validation_generator = validation_datagen.flow_from_dataframe( validate_df, os.path.join(data_dir, "train"), x_col='filename', y_col='category', target_size=IMAGE_SIZE, class_mode='categorical', batch_size=args.batch_size) # Example Generation example_df = train_df.sample(n=1).reset_index(drop=True) example_generator = train_datagen.flow_from_dataframe( example_df, os.path.join(data_dir, "train"), x_col='filename', y_col='category', target_size=IMAGE_SIZE, class_mode='categorical') # Example Generation Ploting # plt.figure(figsize=(12, 12)) # for i in range(0, 15): # plt.subplot(5, 3, i+1) # for X_batch, Y_batch in example_generator: # image = X_batch[0] # plt.imshow(image) # break # plt.tight_layout() # plt.show() # Fit model epochs = 3 if if_fast_run else args.train_epochs history = model.fit(train_generator, epochs=epochs, validation_data=validation_generator, callbacks=callbacks, initial_epoch=args.start_epoch) # Save last model ckpt model.save_weights(f"./{model_type}-last_ckpt.h5")
def build_model(): #main input is the length of the amino acid in the protein sequence (700,) main_input = Input(shape=(700, ), dtype='float32', name='main_input') #Embedding Layer used as input to the neural network embed = Embedding(output_dim=21, input_dim=21, input_length=700)(main_input) #secondary input is the protein profile features auxiliary_input = Input(shape=(700, 21), name='aux_input') #get shape of input layers print("Protein Sequence shape: ", main_input.get_shape()) print("Protein Profile shape: ", auxiliary_input.get_shape()) #concatenate 2 input layers concat = Concatenate(axis=-1)([embed, auxiliary_input]) #3x1D Convolutional Hidden Layers with BatchNormalization and MaxPooling conv_layer1 = Conv1D(64, 7, kernel_regularizer="l2", padding='same')(concat) batch_norm = BatchNormalization()(conv_layer1) conv2D_act = activations.relu(batch_norm) conv_dropout = Dropout(0.5)(conv2D_act) # ave_pool_1 = AveragePooling1D(2, 1, padding='same')(conv_dropout) max_pool_1D_1 = MaxPooling1D(pool_size=2, strides=1, padding='same')(conv_dropout) conv_layer2 = Conv1D(128, 7, padding='same')(concat) batch_norm = BatchNormalization()(conv_layer2) conv2D_act = activations.relu(batch_norm) conv_dropout = Dropout(0.5)(conv2D_act) # ave_pool_2 = AveragePooling1D(2, 1, padding='same')(conv_dropout) max_pool_1D_2 = MaxPooling1D(pool_size=2, strides=1, padding='same')(conv_dropout) conv_layer3 = Conv1D(256, 7, kernel_regularizer="l2", padding='same')(concat) batch_norm = BatchNormalization()(conv_layer3) conv2D_act = activations.relu(batch_norm) conv_dropout = Dropout(0.5)(conv2D_act) max_pool_1D_3 = MaxPooling1D(pool_size=2, strides=1, padding='same')(conv_dropout) # ave_pool_3 = AveragePooling1D(2, 1, padding='same')(conv_dropout) #concatenate convolutional layers conv_features = Concatenate(axis=-1)( [max_pool_1D_1, max_pool_1D_2, max_pool_1D_3]) #output node is 1D convolutional layer with 8 filters for the 8 different categories main_output = Conv1D(8, 7, padding='same', activation='softmax', name='main_output')(conv_features) #create model from inputs and outputs model = Model(inputs=[main_input, auxiliary_input], outputs=[main_output]) #use Adam optimizer adam = Adam(lr=0.0003) #compile model using adam optimizer and the cateogorical crossentropy loss function model.compile(optimizer=adam, loss={'main_output': 'categorical_crossentropy'}, metrics=[ 'accuracy', MeanSquaredError(), FalseNegatives(), FalsePositives(), TrueNegatives(), TruePositives(), MeanAbsoluteError(), Recall(), Precision() ]) model.summary() #set earlyStopping and checkpoint callback earlyStopping = EarlyStopping(monitor='val_loss', patience=5, verbose=1, mode='min') checkpoint_path = "checkpoints/3xConv_cnn_" + str( datetime.date(datetime.now())) + ".h5" checkpointer = ModelCheckpoint(filepath=checkpoint_path, verbose=1, save_best_only=True, monitor='val_acc', mode='max') return model
output = Conv2DTranspose(filters=OUTPUT_CHANNELS, kernel_size=[1, 1], activation='sigmoid', padding='same')(model) model = Model(inputs, output) print(model.summary()) model.compile(optimizer='adam', loss=TverskyLoss(alpha=0.2, smooth=1e3), metrics=[ 'acc', FalseNegatives(), FalsePositives(), TruePositives(), TrueNegatives() ]) def show_predictions(dataset=None, num=1): if dataset: for image, mask in dataset.take(num): pred_mask = model.predict(image) display([image[0], mask[0], pred_mask[0]]) else: display([ sample_image, sample_mask, model.predict(sample_image[tf.newaxis, ...])[0] ], with_colorbar=True)
train_dataloader = Dataloader(train_dataset, batch_size=cfg.BATCH_SIZE, shuffle=True) valid_dataloader = Dataloader(valid_dataset, batch_size=cfg.BATCH_SIZE, shuffle=False) loss = cfg.loss optim = tf.keras.optimizers.SGD(lr=cfg.LR, momentum=0.9, nesterov=True) metrics = [ IOUScore(threshold=cfg.metric_threshold, per_image=cfg.metric_per_image), FScore(threshold=cfg.metric_threshold, per_image=cfg.metric_per_image), Precision(threshold=cfg.metric_threshold, per_image=cfg.metric_per_image), Recall(threshold=cfg.metric_threshold, per_image=cfg.metric_per_image), TruePositives(thresholds=cfg.metric_threshold), TrueNegatives(thresholds=cfg.metric_threshold), FalsePositives(thresholds=cfg.metric_threshold), FalseNegatives(thresholds=cfg.metric_threshold) ] # with mirrored_strategy.scope(): model = sm.Unet(backbone_name=cfg.backbone_name, input_shape=cfg.input_shape, classes=n_classes, activation='sigmoid' if n_classes == 1 else 'softmax', weights=None, encoder_weights=cfg.encoder_weights, encoder_freeze=cfg.encoder_freeze, encoder_features=cfg.encoder_features, decoder_block_type=cfg.decoder_block_type,
def train_model(self, themes_weight: ThemeWeights, dataset: TrainValidationDataset, voc_size: int, keras_callback: LambdaCallback): conv_reg = 0#0.015 dense_reg = 0#0.015 dropout_conv = 0.1#0.2 dropout_dense = 0.1#0.2 article_length = dataset.article_length theme_count = dataset.theme_count input = keras.layers.Input(shape=(dataset.article_length,)) layer = keras.layers.Embedding(input_dim=voc_size, input_length=article_length, output_dim=self.embedding_output_dim, mask_zero=True)(input) layer = Dropout(dropout_conv)(layer) # Each convolution will have filter looking for some specific word combinations. For example a filter might # return a small value except for "apple iphone". conv1 = keras.layers.Conv1D(filters=64, kernel_size=2, input_shape=(voc_size, self.embedding_output_dim), activation=tf.nn.relu, kernel_regularizer=l2(l=conv_reg))(layer) conv1 = keras.layers.GlobalMaxPooling1D()(conv1) conv1 = keras.layers.Dense(32, activation=tf.nn.relu)(conv1) conv1 = Dropout(dropout_conv)(conv1) conv2 = keras.layers.Conv1D(filters=64, kernel_size=3, input_shape=(voc_size, self.embedding_output_dim), activation=tf.nn.relu, kernel_regularizer=l2(l=conv_reg))(layer) conv2 = keras.layers.GlobalMaxPooling1D()(conv2) conv2 = keras.layers.Dense(32, activation=tf.nn.relu)(conv2) conv2 = Dropout(dropout_conv)(conv2) conv3 = keras.layers.Conv1D(filters=64, kernel_size=1, input_shape=(voc_size, self.embedding_output_dim), activation=tf.nn.relu, kernel_regularizer=l2(l=conv_reg))(layer) conv3 = keras.layers.GlobalMaxPooling1D()(conv3) conv3 = keras.layers.Dense(32, activation=tf.nn.relu)(conv3) conv3 = Dropout(dropout_conv)(conv3) conv4 = keras.layers.Conv1D(filters=40, kernel_size=5, input_shape=(voc_size, self.embedding_output_dim), activation=tf.nn.relu, kernel_regularizer=l2(l=conv_reg))(layer) conv4 = keras.layers.GlobalMaxPooling1D()(conv4) conv4 = keras.layers.Dense(20, activation=tf.nn.relu)(conv4) conv4 = Dropout(dropout_conv)(conv4) layer = keras.layers.Concatenate()([conv1, conv2, conv3, conv4]) layer = keras.layers.Dense(32, activation=tf.nn.relu, kernel_regularizer=l2(l=conv_reg))(layer) layer = keras.layers.Dropout(dropout_dense)(layer) # layer = keras.layers.Dense(64, activation=tf.nn.relu, kernel_regularizer=l2(l=conv_reg))(layer) # layer = keras.layers.Dropout(dropout_dense)(layer) layer = keras.layers.Dense(theme_count, activation=tf.nn.sigmoid, kernel_regularizer=l2(l=dense_reg))(layer) model = keras.Model(inputs=input, outputs=layer) model.compile(optimizer=tf.keras.optimizers.Adam(clipnorm=1, learning_rate=0.00009), loss=WeightedBinaryCrossEntropy(themes_weight.weight_array()), metrics=[AUC(multi_label=True), BinaryAccuracy(), TruePositives(), TrueNegatives(), FalseNegatives(), FalsePositives(), Recall(), Precision()], run_eagerly=None) model.summary() self._model = model if self.__plot_directory is not None: self.plot_model(self.__plot_directory) # Fix for https://github.com/tensorflow/tensorflow/issues/38988 model._layers = [layer for layer in model._layers if not isinstance(layer, dict)] callbacks = [ManualInterrupter(), keras_callback] model.fit(dataset.trainData, epochs=self.epochs, steps_per_epoch=dataset.train_batch_count, validation_data=dataset.validationData, validation_steps=dataset.validation_batch_count, callbacks=callbacks, )
class TrainingController: """ Custom training loop with custom loss. """ def __init__(self, model, optimizer, log_file_dir=None, data_properties=None): """ Init. method. :param log_file_dir: If this is not None, then the training performance is stored in that log file directory. :param model: The model used for training. :param optimizer: Optimizer to be used for the weight updates. """ self._data_properties = data_properties self._log_file_dir = log_file_dir self._optimizer = optimizer self._model = model self._tp_obj = TruePositives() self._tn_obj = TrueNegatives() self._fp_obj = FalsePositives() self._fn_obj = FalseNegatives() self._pre_obj = Precision() self._rec_obj = Recall() self._setup_changes = {'train': [], 'valid': []} self._loss_tt = {'train': [], 'valid': []} self._loss_ms = {'train': [], 'valid': []} self._loss_total = {'train': [], 'valid': []} self._acc = {'train': [], 'valid': []} self._tn = {'train': [], 'valid': []} self._tp = {'train': [], 'valid': []} self._fn = {'train': [], 'valid': []} self._fp = {'train': [], 'valid': []} self._rec = {'train': [], 'valid': []} self._pre = {'train': [], 'valid': []} def _tb_update(self, grads, y_true, y_pred, m_idx, emb, attn, epoch, batch, batch_size, prefix='train/'): step = epoch * batch_size + batch if grads is not None: for var, grad in zip(self._model.trainable_variables, grads): tf.summary.histogram(prefix + var.name + '/gradient', grad, step=step) if attn is not None: self._plot_attention_weights( attention=attn, step=step, prefix=prefix + 'layer{}/enc_pad/'.format(0), description='x: input jobs | y: output jobs') m_idx = tf.tile(m_idx[:, :, tf.newaxis, tf.newaxis], [1, 1, tf.shape(m_idx)[1], 1]) tf.summary.image(prefix + "selected_machine", m_idx, step=step) for var in self._model.trainable_variables: tf.summary.histogram(prefix + var.name + '/weight', var, step=step) for m in tf.range(tf.shape(y_true)[1]): tf.summary.image(prefix + "y_true_m{}".format(m), tf.expand_dims(y_true[:, m, :, :], -1), step=step) tf.summary.image(prefix + "y_pred_m{}".format(m), tf.expand_dims(y_pred[:, m, :, :], -1), step=step) @staticmethod def _plot_attention_weights(attention, step, description='x: input, y: output', prefix='train/'): for head in range(attention.shape[1]): data = [] for attn_matrix in tf.unstack(attention, axis=0): attn_matrix = attn_matrix.numpy() cmap = cm.get_cmap('Greens') norm = Normalize(vmin=attn_matrix.min(), vmax=attn_matrix.max()) data.append(cmap(norm(attn_matrix))) tf.summary.image(prefix + "head{}".format(head), np.array(data, np.float32)[:, head, :, :, :], step=step, description=description) def train(self, train_data, val_data=None, epochs=1, steps_per_epoch=100, checkpoint_path=None, validation_steps=10): """ Custom training loop with custom loss. :param train_data: training data set :param val_data: validation data set :param epochs: number of training epochs :param steps_per_epoch: steps per epochs (required if generator used). If set to None, the number will be computed automatically. :param checkpoint_path: save checkpoints epoch-wise if directory provided. :param validation_steps: :return accumulated loss and accuracy """ log_path = self._log_file_dir + '/' + datetime.now().strftime( "%y%m%d-%H%M%S") Path(log_path).parent.mkdir(parents=True, exist_ok=True) writer = tf.summary.create_file_writer(log_path) writer.set_as_default() for step in tf.range(steps_per_epoch * epochs, dtype=tf.int64): tf.summary.scalar('learning_rate', self._optimizer.lr(tf.cast(step, tf.float32)), step=step) for epoch in range(epochs): for batch, (x, y_true) in enumerate(train_data): if batch == 0: self._target_shape = x.shape if batch >= steps_per_epoch: break loss_total, grads, y_pred, m, emb, attn = iterative_optimize( optimizer=self._optimizer, model=self._model, x=x, y_true=y_true, data_properties=self._data_properties, training=True) loss_tt = lateness(x, y_pred) loss_ms = makespan(x, y_pred) setup_changes = count_setup_changes(x, y_pred) self._update_metric('train', y_true, y_pred, (loss_tt, loss_ms, loss_total), setup_changes, batch) self._print('train', epoch, epochs, batch, steps_per_epoch) if batch % TB_LOG_INV_FREQ == 0: self._tb_update(grads, y_true, y_pred, m, emb, attn, epoch, batch, steps_per_epoch, 'train/') self._log('train', epoch * steps_per_epoch + batch) self._validation_loop(val_data, validation_steps, epoch) self._empty_metric() if checkpoint_path and (epoch % CKPT_SAVE_INV_FREQ == 0): Path(checkpoint_path).parent.mkdir(parents=True, exist_ok=True) self._model.save_weights(checkpoint_path.format(epoch=epoch)) writer.close() def _empty_metric(self): """ This will empty all metric dict, to avoid memory overflows. """ for key in ['train', 'valid']: self._loss_tt.get(key).clear() self._loss_ms.get(key).clear() self._loss_total.get(key).clear() self._acc.get(key).clear() self._setup_changes.get(key).clear() self._tp_obj.reset_states() self._tp.get(key).clear() self._tn_obj.reset_states() self._tn.get(key).clear() self._fp_obj.reset_states() self._fp.get(key).clear() self._fn_obj.reset_states() self._fn.get(key).clear() self._pre_obj.reset_states() self._pre.get(key).clear() self._rec_obj.reset_states() self._rec.get(key).clear() def _print(self, key: str, epoch: int, epochs_max: int, batch: int, batch_max: int): """ Prints the performance results in the console. :param key: :param epoch: :param epochs_max: :param batch: :param batch_max: """ mean_loss = tf.reduce_mean(self._loss_total.get(key)) mean_acc = tf.reduce_mean(self._acc.get(key)) mean_pre = tf.reduce_mean(self._pre.get(key)) mean_rec = tf.reduce_mean(self._rec.get(key)) if key == 'train': tf.print( '\r[Train] [E {0}/{1}] [B {2}/{3}] Loss: {4} Acc: {5} Pre: {6} Rec: {7}' .format(epoch + 1, epochs_max, batch + 1, batch_max, mean_loss, mean_acc, mean_pre, mean_rec), end='') else: tf.print( '\n[Valid] [E {0}/{1}] [B {2}/{3}] Loss: {4} Acc: {5} Pre: {6} Rec: {7}\n' .format(epoch, epochs_max, batch + 1, batch_max, mean_loss, mean_acc, mean_pre, mean_rec)) def _validation_loop(self, validation_data, validation_steps: int, epoch: int): """ Looping through the validation set and ouputs the validation performance results in a final step. :param validation_data: :param validation_steps: """ for batch, (x, y_true) in enumerate(validation_data): if batch >= validation_steps: break optimizer = optimizer, loss_total, grads, y_pred, m, emb, attn = iterative_optimize( optimizer=self._optimizer, model=self._model, x=x, y_true=y_true, data_properties=self._data_properties, training=False) loss_tt = lateness(x, y_pred) loss_ms = makespan(x, y_pred) setup_changes = count_setup_changes(x, y_pred) self._update_metric('valid', y_true, y_pred, (loss_tt, loss_ms, loss_total), setup_changes, batch) if batch % (TB_LOG_INV_FREQ * 0.1) == 0: self._tb_update(None, y_true, y_pred, m, emb, attn, epoch, batch, validation_steps, 'valid/') self._log('valid', epoch * validation_steps + batch) self._print('valid', 0, 0, validation_steps - 1, validation_steps) def _update_metric(self, key: str, y_true: tf.Tensor, y_pred: tf.Tensor, loss: tuple, setup_changes: tf.Tensor, step=0): """ Updates the metrics. :param key: :param y_true: :param y_pred: :param loss: :param grads: """ loss_tt, loss_ms, loss_total = loss self._loss_tt.get(key).append(loss_tt) self._loss_ms.get(key).append(loss_ms) self._loss_total.get(key).append(loss_total) self._setup_changes.get(key).append(setup_changes) self._tp_obj.update_state(y_true, y_pred) self._tp.get(key).append(self._tp_obj.result()) self._tn_obj.update_state(y_true, y_pred) self._tn.get(key).append(self._tn_obj.result()) self._fp_obj.update_state(y_true, y_pred) self._fp.get(key).append(self._fp_obj.result()) self._fn_obj.update_state(y_true, y_pred) self._fn.get(key).append(self._fn_obj.result()) self._pre_obj.update_state(y_true, y_pred) self._pre.get(key).append(self._pre_obj.result()) self._rec_obj.update_state(y_true, y_pred) self._rec.get(key).append(self._rec_obj.result()) shape = tf.shape(y_true) y_true = tf.squeeze(tf.transpose(y_true, [0, 2, 1, 3])) y_pred = tf.squeeze(tf.transpose(y_pred, [0, 2, 1, 3])) y_pred = tf.reshape(y_pred, [shape[0], shape[2], -1]) y_true = tf.reshape(y_true, [shape[0], shape[2], -1]) self._acc.get(key).append(categorical_accuracy(y_true, y_pred)) def _log(self, key: str, epoch: int): """ Logs the training progress in a log file. If the log file dir parameter is set. :param key: :param epoch: """ if not self._log_file_dir: return if not os.path.exists(self._log_file_dir): os.mkdir(self._log_file_dir) tf.summary.scalar(key + '/tardiness', data=tf.reduce_mean(self._loss_ms.get(key)), step=epoch) tf.summary.scalar(key + '/makespan', data=tf.reduce_mean(self._loss_tt.get(key)), step=epoch) tf.summary.scalar(key + '/loss', data=tf.reduce_mean(self._loss_total.get(key)), step=epoch) tf.summary.scalar(key + '/acc', data=tf.reduce_mean(self._acc.get(key)), step=epoch) tf.summary.scalar(key + '/setup_changes', data=tf.reduce_mean(self._setup_changes.get(key)), step=epoch) tf.summary.scalar(key + '/tp', data=tf.reduce_mean(self._tp.get(key)), step=epoch) tf.summary.scalar(key + '/fp', data=tf.reduce_mean(self._fp.get(key)), step=epoch) tf.summary.scalar(key + '/tn', data=tf.reduce_mean(self._tn.get(key)), step=epoch) tf.summary.scalar(key + '/fn', data=tf.reduce_mean(self._fn.get(key)), step=epoch) tf.summary.scalar(key + '/pre', data=tf.reduce_mean(self._pre.get(key)), step=epoch) tf.summary.scalar(key + '/rec', data=tf.reduce_mean(self._rec.get(key)), step=epoch)