示例#1
0
def _call_unconverted(f, args, kwargs):
  """Calls the original function without converting with AutoGraph.

  Args typically include `self`, as required by the conversion process.
  When conversion is skipped, `self` is not necessary, because the
  original bound method is being executed. This code removes it.

  Args:
    f: the original function for which conversion was requested.
    args: positional arguments for f May or may not include self.
    kwargs: keyword arguments for f

  Returns:
    The return value of f(*args, **kwargs).
  """
  # TODO(mdan): This may be inconsistent in certain situations.
  # If the function had already been annotated with @tf.function, it
  # may be bound to the incorrect object. It's unclear if those situations
  # are possible, but if they happen, we need to check if f is bound
  # to a shim like WeakrefSelf and unpack it.

  if tf_inspect.ismethod(f) and args:
    f_self = inspect_utils.getmethodself(f)
    if args[0] is f_self:
      args = args[1:]

  return f(*args, **kwargs)
示例#2
0
def converted_call(f, owner, options, args, kwargs):
    """Compiles a function call inline. For internal use only."""
    if owner is not None:
        if not isinstance(f, str):
            raise ValueError(
                'When owner is specified, the function name must be specified as'
                ' a string: {}'.format(f))
        owner_attr = f

        # Special case when the owner is a 'super' object. In that case lookups of
        # dynamic attributes won't work. See
        # inspect_utils.SuperWrapperForDynamicAttrs.
        if isinstance(owner, super):
            owner = inspect_utils.SuperWrapperForDynamicAttrs(owner)

        f = getattr(owner, f)

    if logging.has_verbosity(1):
        if owner is not None:
            composite_desc = '("{}" attr of {})'.format(owner_attr, owner)
        else:
            composite_desc = ''

        logging.log(1, 'Converted call: %s %s\n    args: %s\n    kwargs: %s\n',
                    f, composite_desc, args, kwargs)

    if inspect_utils.isbuiltin(f):
        if kwargs:
            return py_builtins.overload_of(f)(*args, **kwargs)
        else:
            return py_builtins.overload_of(f)(*args)

    # TODO(mdan): Clean up the naming inconsistency.
    if hasattr(f, 'autograph_info__') or hasattr(f, '__ag_compiled'):
        logging.log(2, 'Permanently whitelisted: %s: already converted', f)
        return _call_unconverted(f, args, kwargs)

    # TODO(b/122265385): Remove this bypass.
    if (_is_known_loaded_type(f, 'wrapt', 'FunctionWrapper')
            or _is_known_loaded_type(f, 'wrapt', 'BoundFunctionWrapper')):
        logging.warn(
            'Entity {} appears to be decorated by wrapt, which is not yet supported'
            ' by AutoGraph. The function will be called without transformation.'
            ' You may however apply AutoGraph before the decorator.'.format(f))
        logging.log(2, 'Permanently whitelisted: %s: wrapt decorated', f)
        return _call_unconverted(f, args, kwargs)

    if _is_known_loaded_type(f, 'functools', '_lru_cache_wrapper'):
        logging.log(2, 'Permanently whitelisted: %s: lru_cache', f)
        return _call_unconverted(f, args, kwargs)

    # Constructors are permanently whitelisted.
    # TODO(mdan): Toggle as experimental feature instead.
    # TODO(b/124016764): Remove this limitation.
    if tf_inspect.isclass(f):
        logging.log(2, 'Permanently whitelisted: %s: constructor', f)
        return _call_unconverted(f, args, kwargs)

    # Other built-in modules are permanently whitelisted.
    # TODO(mdan): Figure out how to do this consistently for all stdlib modules.
    if any(f in m.__dict__.values()
           for m in (collections, pdb, copy, inspect, re)):
        logging.log(2, 'Permanently whitelisted: %s: part of builtin module',
                    f)
        return _call_unconverted(f, args, kwargs)

    # Custom ops and kernels are also permanently whitelisted.
    # See tensorflow.framework.load_library.
    if (hasattr(f, '__module__')
            and hasattr(f.__module__, '_IS_TENSORFLOW_PLUGIN')):
        logging.log(2, 'Permanently whitelisted: %s: TensorFlow plugin', f)
        return _call_unconverted(f, args, kwargs)

    if not options.force_conversion and conversion.is_whitelisted_for_graph(f):
        return _call_unconverted(f, args, kwargs)

    # internal_convert_user_code is for example turned off when issuing a dynamic
    # call conversion from generated code while in nonrecursive mode. In that
    # case we evidently don't want to recurse, but we still have to convert
    # things like builtins.
    if not options.internal_convert_user_code:
        return _call_unconverted(f, args, kwargs)

    # TODO(mdan): Move this entire block inside to_graph.
    try:  # Begin of transformation error guards

        # Unwrap functools.partial objects
        # TODO(mdan): Consider sharing unwrapping logic with tf_inspect.
        while isinstance(f, functools.partial):
            args = f.args + args
            new_kwargs = {}
            if f.keywords is not None:
                new_kwargs.update(f.keywords)
            if kwargs is not None:
                new_kwargs.update(kwargs)
            kwargs = new_kwargs
            f = f.func

        if tf_inspect.isfunction(f) or tf_inspect.ismethod(f):
            # Regular functions
            target_entity = f
            f_self = inspect_utils.getmethodself(f)

            # TODO(b/119246461): This may be more elegantly handled using __get__?
            if f_self is not None:
                effective_args = (f_self, ) + args
            else:
                effective_args = args

        elif tf_inspect.isclass(f):
            # Constructors
            # Note: Until we support class constructurs, and enable whole-class
            # conversion with an experimental flag, this branch is dead code.
            # TODO(mdan): Consider removing unless there is a compelling use case.
            target_entity = f
            effective_args = args

        elif hasattr(f, '__call__') and hasattr(f, '__class__'):
            # Callable objects
            target_entity = f.__call__
            effective_args = (f, ) + args

        else:
            target_entity = f
            raise NotImplementedError('unknown callable type "%s"' % type(f))

        if not tf_inspect.isclass(target_entity):
            if not hasattr(target_entity, '__code__'):
                logging.log(2, 'Permanently whitelisted: %s: native binding',
                            target_entity)
                return _call_unconverted(f, args, kwargs)
            elif (hasattr(target_entity.__code__, 'co_filename')
                  and target_entity.__code__.co_filename == '<string>'):
                # TODO(mdan): __globals__['txt'] might work in Py3.
                logging.log(
                    2, 'Permanently whitelisted: %s: dynamic code (exec?)',
                    target_entity)
                return _call_unconverted(f, args, kwargs)

        converted_f = to_graph(
            target_entity,
            recursive=options.recursive,
            experimental_optional_features=options.optional_features)

        if logging.has_verbosity(2):
            logging.log(2, 'Defaults of %s : %s', converted_f,
                        converted_f.__defaults__)
            if six.PY3:
                logging.log(2, 'KW defaults of %s : %s', converted_f,
                            converted_f.__kwdefaults__)

            if kwargs is not None:
                callargs = tf_inspect.getcallargs(converted_f, *effective_args,
                                                  **kwargs)
            else:
                callargs = tf_inspect.getcallargs(converted_f, *effective_args)

            formatted_callargs = '\n'.join('    {}: {}'.format(k, v)
                                           for k, v in callargs.items())
            logging.log(2, 'Calling %s with\n%s\n', converted_f,
                        formatted_callargs)

    except Exception as e:  # pylint:disable=broad-except
        logging.log(1,
                    'Error transforming entity %s',
                    target_entity,
                    exc_info=True)
        if is_autograph_strict_conversion_mode():
            raise
        logging.warn(
            'Entity %s could not be transformed and will be executed as-is.'
            ' Please report this to the AutoGraph team. When filing the bug, set'
            ' the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and'
            ' attach the full output. Cause: %s', target_entity, e)
        return _call_unconverted(f, args, kwargs)

    with StackTraceMapper(converted_f), tf_stack.CurrentModuleFilter():
        try:
            if kwargs is not None:
                result = converted_f(*effective_args, **kwargs)
            else:
                result = converted_f(*effective_args)
        except Exception as e:
            _attach_metadata(e, converted_f, True)
            raise

    return result
示例#3
0
文件: api.py 项目: zmdsjtu/tensorflow
def converted_call(f, owner, options, *args, **kwargs):
    """Compiles a function call inline. For internal use only."""
    logging.vlog(logging.DEBUG, 'Converted call: %s; owner: %s', f, owner)

    if owner is not None:
        if not isinstance(f, str):
            raise ValueError(
                'When owner is specified, the function name must be specified as'
                ' a string: {}'.format(f))

        # Special case when the owner is a 'super' object. In that case lookups of
        # dynamic attributes won't work. See
        # inspect_utils.SuperWrapperForDynamicAttrs.
        if isinstance(owner, super):
            owner = inspect_utils.SuperWrapperForDynamicAttrs(owner)

        f = getattr(owner, f)

    if inspect_utils.isbuiltin(f):
        return py_builtins.overload_of(f)(*args, **kwargs)

    # TODO(mdan): This needs cleanup.
    # In particular, we may want to avoid renaming functions altogether.
    if not options.force_conversion and conversion.is_whitelisted_for_graph(f):

        # Args typically include `self`, as required by the conversion process.
        # When conversion is skipped, `self` is not necessary, because the
        # original bound method is being executed. This code removes it.
        if tf_inspect.ismethod(f) and args:
            f_self = inspect_utils.getmethodself(f)
            if args[0] is f_self:
                args = args[1:]

        return f(*args, **kwargs)

    # internal_convert_user_code is for example turned off when issuing a dynamic
    # call conversion from generated code while in nonrecursive mode. In that
    # case we evidently don't want to recurse, but we still have to convert
    # things like builtins.
    if not options.internal_convert_user_code:
        return f(*args, **kwargs)

    # Unwrap functools.partial objects
    # TODO(mdan): Consider sharing unwrapping logic with tf_inspect.
    while isinstance(f, functools.partial):
        args = f.args + args
        new_kwargs = {}
        if f.keywords is not None:
            new_kwargs.update(f.keywords)
        new_kwargs.update(kwargs)
        kwargs = new_kwargs
        f = f.func

    if tf_inspect.isfunction(f) or tf_inspect.ismethod(f):
        # Regular functions
        target_entity = f
        arg_map_target = f
        f_self = inspect_utils.getmethodself(f)

        # TODO(b/119246461): This may be more elegantly handled using __get__?
        if f_self is not None:
            # If this is a method call, it may or may not include self.
            #
            # Example when self is included:
            #   converted_call(to_graph(foo.bar), foo)
            #
            # Example when self is not included:
            #   super(...).foo(args)
            #
            if owner is not None and (not args or args[0] is not owner):
                effective_args = (owner, ) + args
            else:
                # When the owner is not specified, use the result of
                # inspect_utils.getmethodclass.
                # TODO(b/119246461): Make sure an owner is always specified.
                if not args or args[0] is not f_self:
                    effective_args = (f_self, ) + args
                else:
                    effective_args = (f_self, ) + args[1:]
            partial_types = (f_self, )
        else:
            effective_args = args
            partial_types = ()

    elif tf_inspect.isclass(f):
        # Constructors
        target_entity = f
        arg_map_target = f.__init__
        effective_args = args
        partial_types = ()

    elif hasattr(f, '__call__') and hasattr(f, '__class__'):
        # Callable objects
        target_entity = f.__call__
        arg_map_target = f.__call__
        effective_args = (f, ) + args
        partial_types = (f.__class__, )

    else:
        NotImplementedError('unknown callable type "%s"' % type(f))

    arg_values = tf_inspect.getcallargs(arg_map_target, *args, **kwargs)
    arg_types = {}
    for name, arg in arg_values.items():
        arg_class = arg.__class__
        arg_types[name] = (arg_class.__name__, arg_class)

    # When called from within a decorator, this is the only indication that
    # the function is a method - it appears that the decorator is applied
    # before the method is bound.
    if not partial_types:
        if 'self' in arg_values:
            if tf_inspect.isclass(arg_values['self'].__class__):
                partial_types = (arg_values['self'].__class__, )
        elif 'cls' in arg_values:
            if tf_inspect.isclass(arg_values['cls']):
                partial_types = (arg_values['cls'], )

    converted_f = to_graph(
        target_entity,
        recursive=options.recursive,
        arg_values=arg_values,
        arg_types=arg_types,
        experimental_optional_features=options.optional_features,
        experimental_strip_decorators=options.strip_decorators,
        experimental_verbose=options.verbose,
        experimental_partial_types=partial_types)

    result = converted_f(*effective_args, **kwargs)

    # The converted function's closure is simply inserted into the function's
    # module __dict__. Since modules are permanently cached, that results in
    # leaking the entire closure.
    # Normally, it's not safe to delete the module because that may release said
    # closure as well. However, in the case of converted_call we are certain the
    # function will not be executed again, so the closure should no longer be
    # needed so long as the function doesn't return any executable code.
    # TODO(mdan): Attach the closure properly, using cells.
    if all(map(_is_not_callable, nest.flatten(result))):
        del sys.modules[converted_f.__module__]

    return result
示例#4
0
def converted_call(f, owner, options, args, kwargs):
  """Compiles a function call inline. For internal use only."""
  logging.log(1,
              'Converted call: %s; owner: %s\n    args: %s\n    kwargs: %s\n',
              f, owner, args, kwargs)

  if owner is not None:
    if not isinstance(f, str):
      raise ValueError(
          'When owner is specified, the function name must be specified as'
          ' a string: {}'.format(f))

    # Special case when the owner is a 'super' object. In that case lookups of
    # dynamic attributes won't work. See
    # inspect_utils.SuperWrapperForDynamicAttrs.
    if isinstance(owner, super):
      owner = inspect_utils.SuperWrapperForDynamicAttrs(owner)

    f = getattr(owner, f)

  if inspect_utils.isbuiltin(f):
    return py_builtins.overload_of(f)(*args, **kwargs)

  # TODO(b/122265385): Remove this bypass.
  if (_is_known_loaded_type(f, 'wrapt', 'FunctionWrapper') or
      _is_known_loaded_type(f, 'wrapt', 'BoundFunctionWrapper')):
    logging.warn(
        'Entity {} appears to be decorated by wrapt, which is not yet supported'
        ' by AutoGraph. The function will be called without transformation.'
        ' You may however apply AutoGraph before the decorator.'.format(f))
    logging.log(2, 'Permanently whitelisted: %s: wrapt decorated', f)
    return _call_unconverted(f, args, kwargs)

  # Constructors are permanently whitelisted.
  # TODO(mdan): Toggle as experimental feature instead.
  # TODO(b/124016764): Remove this limitation.
  if tf_inspect.isclass(f):
    logging.log(2, 'Permanently whitelisted: %s: constructor', f)
    return _call_unconverted(f, args, kwargs)

  # Other built-in modules are permanently whitelisted.
  # TODO(mdan): Figure out how to do this consistently for all stdlib modules.
  # Note: TF linter disallows importing inspect.
  if any(f in m.__dict__.values()
         for m in (collections, pdb, copy, tf_inspect._inspect)):  # pylint:disable=protected-access
    logging.log(2, 'Permanently whitelisted: %s: part of builtin module', f)
    return _call_unconverted(f, args, kwargs)

  if not options.force_conversion and conversion.is_whitelisted_for_graph(f):
    return _call_unconverted(f, args, kwargs)

  # internal_convert_user_code is for example turned off when issuing a dynamic
  # call conversion from generated code while in nonrecursive mode. In that
  # case we evidently don't want to recurse, but we still have to convert
  # things like builtins.
  if not options.internal_convert_user_code:
    return _call_unconverted(f, args, kwargs)

  # TODO(mdan): Move this entire block inside to_graph.
  try:  # Begin of transformation error guards

    # Unwrap functools.partial objects
    # TODO(mdan): Consider sharing unwrapping logic with tf_inspect.
    while isinstance(f, functools.partial):
      args = f.args + args
      new_kwargs = {}
      if f.keywords is not None:
        new_kwargs.update(f.keywords)
      new_kwargs.update(kwargs)
      kwargs = new_kwargs
      f = f.func

    if tf_inspect.isfunction(f) or tf_inspect.ismethod(f):
      # Regular functions
      target_entity = f
      arg_map_target = f
      f_self = inspect_utils.getmethodself(f)

      # TODO(b/119246461): This may be more elegantly handled using __get__?
      if f_self is not None:
        # If this is a method call, it may or may not include self.
        #
        # Example when self is included:
        #   converted_call(to_graph(foo.bar), foo)
        #
        # Example when self is not included:
        #   super(...).foo(args)
        #
        if owner is not None and (not args or args[0] is not owner):
          effective_args = (owner,) + args
        else:
          # When the owner is not specified, use the result of
          # inspect_utils.getmethodclass.
          # TODO(b/119246461): Make sure an owner is always specified.
          if not args or args[0] is not f_self:
            effective_args = (f_self,) + args
          else:
            effective_args = (f_self,) + args[1:]
        partial_types = (f_self,)
      else:
        effective_args = args
        partial_types = ()

    elif tf_inspect.isclass(f):
      # Constructors
      # Note: Until we support class constructurs, and enable whole-class
      # conversion with an experimental flag, this branch is dead code.
      # TODO(mdan): Consider removing unless there is a compelling use case.
      target_entity = f
      arg_map_target = f.__init__
      effective_args = args
      partial_types = ()

    elif hasattr(f, '__call__') and hasattr(f, '__class__'):
      # Callable objects
      target_entity = f.__call__
      arg_map_target = f.__call__
      effective_args = (f,) + args
      partial_types = (f.__class__,)

    else:
      raise NotImplementedError('unknown callable type "%s"' % type(f))

    arg_values = tf_inspect.getcallargs(arg_map_target, *args, **kwargs)
    arg_types = {}
    for name, arg in arg_values.items():
      arg_class = arg.__class__
      arg_types[name] = (arg_class.__name__, arg_class)

    # When called from within a decorator, this is the only indication that
    # the function is a method - it appears that the decorator is applied
    # before the method is bound.
    if not partial_types:
      if 'self' in arg_values:
        if tf_inspect.isclass(arg_values['self'].__class__):
          partial_types = (arg_values['self'].__class__,)
      elif 'cls' in arg_values:
        if tf_inspect.isclass(arg_values['cls']):
          partial_types = (arg_values['cls'],)

    logging.log(3, 'Partial types in conversion of %s: %s', target_entity,
                partial_types)

    converted_f = to_graph(
        target_entity,
        recursive=options.recursive,
        arg_values=arg_values,
        arg_types=arg_types,
        experimental_optional_features=options.optional_features,
        experimental_strip_decorators=options.strip_decorators,
        experimental_verbose=options.verbose,
        experimental_partial_types=partial_types)

    if logging.has_verbosity(2):
      logging.log(2, 'Defaults of %s : %s', converted_f,
                  converted_f.__defaults__)
      callargs = tf_inspect.getcallargs(converted_f, *effective_args, **kwargs)
      formatted_callargs = '\n'.join(
          '    {}: {}'.format(k, v) for k, v in callargs.items())
      logging.log(2, 'Calling %s with\n%s\n', converted_f, formatted_callargs)

  # TODO(mdan): Reduce this list.
  except (errors.AutoGraphError, AssertionError, AttributeError, IndexError,
          KeyError, NameError, NotImplementedError, SyntaxError, TypeError,
          ValueError, IOError) as e:
    logging.log(1, 'Error transforming entity %s', target_entity, exc_info=True)
    logging.warn(
        'Entity %s could not be transformed and will be staged without change.'
        ' Error details can be found in the logs when running with the env'
        ' variable AUTOGRAPH_VERBOSITY >= 1. Please report this to the'
        ' AutoGraph team. Cause: %s', target_entity, e)

    return _call_unconverted(f, args, kwargs)

  result = converted_f(*effective_args, **kwargs)

  # The converted function's closure is simply inserted into the function's
  # module __dict__. Since modules are permanently cached, that results in
  # leaking the entire closure.
  # Normally, it's not safe to delete the module because that may release said
  # closure as well. However, in the case of converted_call we are certain the
  # function will not be executed again, so the closure should no longer be
  # needed so long as the function doesn't return any executable code.
  # TODO(mdan): Attach the closure properly, using cells.
  if all(map(_is_not_callable, nest.flatten(result))):
    del sys.modules[converted_f.__module__]

  return result
示例#5
0
def converted_call(f, owner, options, args, kwargs):
  """Compiles a function call inline. For internal use only."""
  logging.log(1,
              'Converted call: %s; owner: %s\n    args: %s\n    kwargs: %s\n',
              f, owner, args, kwargs)

  if owner is not None:
    if not isinstance(f, str):
      raise ValueError(
          'When owner is specified, the function name must be specified as'
          ' a string: {}'.format(f))

    # Special case when the owner is a 'super' object. In that case lookups of
    # dynamic attributes won't work. See
    # inspect_utils.SuperWrapperForDynamicAttrs.
    if isinstance(owner, super):
      owner = inspect_utils.SuperWrapperForDynamicAttrs(owner)

    f = getattr(owner, f)

  if inspect_utils.isbuiltin(f):
    return py_builtins.overload_of(f)(*args, **kwargs)

  # TODO(b/122265385): Remove this bypass.
  if ('wrapt' in sys.modules and
      hasattr(sys.modules['wrapt'], 'FunctionWrapper') and
      isinstance(f, sys.modules['wrapt'].FunctionWrapper)):
    logging.warn(
        'Entity {} appears to be decorated by wrapt, which is not yet supported'
        ' by AutoGraph. The function will be called without transformation.'
        ' You may however apply AutoGraph before the decorator.'.format(f), 1)
    logging.log(2, 'Permanently whitelisted: %s: wrapt decorated', f)
    return f(*args, **kwargs)

  # Constructors are permanently whitelisted.
  # TODO(mdan): Toggle as experimental feature instead.
  # TODO(b/124016764): Remove this limitation.
  if tf_inspect.isclass(f):
    logging.log(2, 'Permanently whitelisted: %s: constructor', f)
    return f(*args, **kwargs)

  # Other built-in modules are permanently whitelisted.
  # TODO(mdan): Figure out how to do this consistently for all stdlib modules.
  if (f in collections.__dict__.values() or f in pdb.__dict__.values() or
      f in copy.__dict__.values()):
    logging.log(2, 'Permanently whitelisted: %s: part of builtin module', f)
    return f(*args, **kwargs)

  # TODO(mdan): This needs cleanup.
  if not options.force_conversion and conversion.is_whitelisted_for_graph(f):

    # TODO(mdan): This may be inconsistent in certain situations.
    # If the function had already been annotated with @tf.function, it
    # may be bound to the incorrect object. It's unclear if those situations
    # are possible, but if they happen, we need to check if f is bound
    # to a shim like WeakrefSelf and unpack it.

    # Args typically include `self`, as required by the conversion process.
    # When conversion is skipped, `self` is not necessary, because the
    # original bound method is being executed. This code removes it.
    if tf_inspect.ismethod(f) and args:
      f_self = inspect_utils.getmethodself(f)
      if args[0] is f_self:
        args = args[1:]

    return f(*args, **kwargs)

  # internal_convert_user_code is for example turned off when issuing a dynamic
  # call conversion from generated code while in nonrecursive mode. In that
  # case we evidently don't want to recurse, but we still have to convert
  # things like builtins.
  if not options.internal_convert_user_code:
    return f(*args, **kwargs)

  # TODO(mdan): Move this entire block inside to_graph.
  try:  # Begin of transformation error guards

    # Unwrap functools.partial objects
    # TODO(mdan): Consider sharing unwrapping logic with tf_inspect.
    while isinstance(f, functools.partial):
      args = f.args + args
      new_kwargs = {}
      if f.keywords is not None:
        new_kwargs.update(f.keywords)
      new_kwargs.update(kwargs)
      kwargs = new_kwargs
      f = f.func

    if tf_inspect.isfunction(f) or tf_inspect.ismethod(f):
      # Regular functions
      target_entity = f
      arg_map_target = f
      f_self = inspect_utils.getmethodself(f)

      # TODO(b/119246461): This may be more elegantly handled using __get__?
      if f_self is not None:
        # If this is a method call, it may or may not include self.
        #
        # Example when self is included:
        #   converted_call(to_graph(foo.bar), foo)
        #
        # Example when self is not included:
        #   super(...).foo(args)
        #
        if owner is not None and (not args or args[0] is not owner):
          effective_args = (owner,) + args
        else:
          # When the owner is not specified, use the result of
          # inspect_utils.getmethodclass.
          # TODO(b/119246461): Make sure an owner is always specified.
          if not args or args[0] is not f_self:
            effective_args = (f_self,) + args
          else:
            effective_args = (f_self,) + args[1:]
        partial_types = (f_self,)
      else:
        effective_args = args
        partial_types = ()

    elif tf_inspect.isclass(f):
      # Constructors
      # Note: Until we support class constructurs, and enable whole-class
      # conversion with an experimental flag, this branch is dead code.
      # TODO(mdan): Consider removing unless there is a compelling use case.
      target_entity = f
      arg_map_target = f.__init__
      effective_args = args
      partial_types = ()

    elif hasattr(f, '__call__') and hasattr(f, '__class__'):
      # Callable objects
      target_entity = f.__call__
      arg_map_target = f.__call__
      effective_args = (f,) + args
      partial_types = (f.__class__,)

    else:
      raise NotImplementedError('unknown callable type "%s"' % type(f))

    arg_values = tf_inspect.getcallargs(arg_map_target, *args, **kwargs)
    arg_types = {}
    for name, arg in arg_values.items():
      arg_class = arg.__class__
      arg_types[name] = (arg_class.__name__, arg_class)

    # When called from within a decorator, this is the only indication that
    # the function is a method - it appears that the decorator is applied
    # before the method is bound.
    if not partial_types:
      if 'self' in arg_values:
        if tf_inspect.isclass(arg_values['self'].__class__):
          partial_types = (arg_values['self'].__class__,)
      elif 'cls' in arg_values:
        if tf_inspect.isclass(arg_values['cls']):
          partial_types = (arg_values['cls'],)

    logging.log(3, 'Partial types in conversion of %s: %s', target_entity,
                partial_types)

    converted_f = to_graph(
        target_entity,
        recursive=options.recursive,
        arg_values=arg_values,
        arg_types=arg_types,
        experimental_optional_features=options.optional_features,
        experimental_strip_decorators=options.strip_decorators,
        experimental_verbose=options.verbose,
        experimental_partial_types=partial_types)

    if logging.has_verbosity(2):
      logging.log(2, 'Defaults of %s : %s', converted_f,
                  converted_f.__defaults__)
      callargs = tf_inspect.getcallargs(converted_f, *effective_args, **kwargs)
      formatted_callargs = '\n'.join(
          '    {}: {}'.format(k, v) for k, v in callargs.items())
      logging.log(2, 'Calling %s with\n%s\n', converted_f, formatted_callargs)

  # TODO(mdan): Reduce this list.
  except (errors.AutoGraphError, AssertionError, AttributeError, IndexError,
          KeyError, NameError, NotImplementedError, SyntaxError, TypeError,
          ValueError, IOError) as e:
    logging.log(1, 'Error transforming entity %s', target_entity, exc_info=True)
    logging.warn(
        'Entity %s could not be transformed and will be staged without change.'
        ' Error details can be found in the logs when running with the env'
        ' variable AUTOGRAPH_VERBOSITY=5. Please report this to the AutoGraph'
        ' team. Cause: %s', target_entity, e)

    return f(*args, **kwargs)

  result = converted_f(*effective_args, **kwargs)

  # The converted function's closure is simply inserted into the function's
  # module __dict__. Since modules are permanently cached, that results in
  # leaking the entire closure.
  # Normally, it's not safe to delete the module because that may release said
  # closure as well. However, in the case of converted_call we are certain the
  # function will not be executed again, so the closure should no longer be
  # needed so long as the function doesn't return any executable code.
  # TODO(mdan): Attach the closure properly, using cells.
  if all(map(_is_not_callable, nest.flatten(result))):
    del sys.modules[converted_f.__module__]

  return result
示例#6
0
def converted_call(f, owner, options, args, kwargs):
    """Compiles a function call inline. For internal use only."""
    logging.log(
        1, 'Converted call: %s; owner: %s\n    args: %s\n    kwargs: %s\n', f,
        owner, args, kwargs)

    if owner is not None:
        if not isinstance(f, str):
            raise ValueError(
                'When owner is specified, the function name must be specified as'
                ' a string: {}'.format(f))

        # Special case when the owner is a 'super' object. In that case lookups of
        # dynamic attributes won't work. See
        # inspect_utils.SuperWrapperForDynamicAttrs.
        if isinstance(owner, super):
            owner = inspect_utils.SuperWrapperForDynamicAttrs(owner)

        f = getattr(owner, f)

    if inspect_utils.isbuiltin(f):
        if kwargs:
            return py_builtins.overload_of(f)(*args, **kwargs)
        else:
            return py_builtins.overload_of(f)(*args)

    if _is_known_loaded_type(f, 'weakref', 'ref'):
        logging.log(2, 'Permanently whitelisted: %s: weakref', f)
        return _call_unconverted(f, args, kwargs)

    # TODO(b/122265385): Remove this bypass.
    if (_is_known_loaded_type(f, 'wrapt', 'FunctionWrapper')
            or _is_known_loaded_type(f, 'wrapt', 'BoundFunctionWrapper')):
        logging.warn(
            'Entity {} appears to be decorated by wrapt, which is not yet supported'
            ' by AutoGraph. The function will be called without transformation.'
            ' You may however apply AutoGraph before the decorator.'.format(f))
        logging.log(2, 'Permanently whitelisted: %s: wrapt decorated', f)
        return _call_unconverted(f, args, kwargs)

    # Constructors are permanently whitelisted.
    # TODO(mdan): Toggle as experimental feature instead.
    # TODO(b/124016764): Remove this limitation.
    if tf_inspect.isclass(f):
        logging.log(2, 'Permanently whitelisted: %s: constructor', f)
        return _call_unconverted(f, args, kwargs)

    # Other built-in modules are permanently whitelisted.
    # TODO(mdan): Figure out how to do this consistently for all stdlib modules.
    # Note: TF linter disallows importing inspect.
    if any(f in m.__dict__.values()
           for m in (collections, pdb, copy, tf_inspect._inspect)):  # pylint:disable=protected-access
        logging.log(2, 'Permanently whitelisted: %s: part of builtin module',
                    f)
        return _call_unconverted(f, args, kwargs)

    if not options.force_conversion and conversion.is_whitelisted_for_graph(f):
        return _call_unconverted(f, args, kwargs)

    # internal_convert_user_code is for example turned off when issuing a dynamic
    # call conversion from generated code while in nonrecursive mode. In that
    # case we evidently don't want to recurse, but we still have to convert
    # things like builtins.
    if not options.internal_convert_user_code:
        return _call_unconverted(f, args, kwargs)

    # TODO(mdan): Move this entire block inside to_graph.
    try:  # Begin of transformation error guards

        # Unwrap functools.partial objects
        # TODO(mdan): Consider sharing unwrapping logic with tf_inspect.
        while isinstance(f, functools.partial):
            args = f.args + args
            new_kwargs = {}
            if f.keywords is not None:
                new_kwargs.update(f.keywords)
            if kwargs is not None:
                new_kwargs.update(kwargs)
            kwargs = new_kwargs
            f = f.func

        if tf_inspect.isfunction(f) or tf_inspect.ismethod(f):
            # Regular functions
            target_entity = f
            f_self = inspect_utils.getmethodself(f)

            # TODO(b/119246461): This may be more elegantly handled using __get__?
            if f_self is not None:
                effective_args = (f_self, ) + args
            else:
                effective_args = args

        elif tf_inspect.isclass(f):
            # Constructors
            # Note: Until we support class constructurs, and enable whole-class
            # conversion with an experimental flag, this branch is dead code.
            # TODO(mdan): Consider removing unless there is a compelling use case.
            target_entity = f
            effective_args = args

        elif hasattr(f, '__call__') and hasattr(f, '__class__'):
            # Callable objects
            target_entity = f.__call__
            effective_args = (f, ) + args

        else:
            target_entity = f
            raise NotImplementedError('unknown callable type "%s"' % type(f))

        converted_f = to_graph(
            target_entity,
            recursive=options.recursive,
            arg_values=None,
            arg_types=None,
            experimental_optional_features=options.optional_features)

        if logging.has_verbosity(2):
            logging.log(2, 'Defaults of %s : %s', converted_f,
                        converted_f.__defaults__)
            if kwargs is not None:
                callargs = tf_inspect.getcallargs(converted_f, *effective_args,
                                                  **kwargs)
            else:
                callargs = tf_inspect.getcallargs(converted_f, *effective_args)
            formatted_callargs = '\n'.join('    {}: {}'.format(k, v)
                                           for k, v in callargs.items())
            logging.log(2, 'Calling %s with\n%s\n', converted_f,
                        formatted_callargs)

    # TODO(mdan): Reduce this list.
    except (errors.AutoGraphError, AssertionError, AttributeError, IndexError,
            KeyError, NameError, NotImplementedError, SyntaxError, TypeError,
            ValueError, IOError) as e:

        logging.log(1,
                    'Error transforming entity %s',
                    target_entity,
                    exc_info=True)

        if is_autograph_strict_conversion_mode():
            raise

        logging.warn(
            'Entity %s could not be transformed and will be executed as-is.'
            ' Some features (e.g. tensor-dependent conditionals and loops) may not'
            ' work as expected.'
            ' Error details can be found in the logs when running with the env'
            ' variable AUTOGRAPH_VERBOSITY >= 1. Please report this to the'
            ' AutoGraph team. Cause: %s', target_entity, e)

        return _call_unconverted(f, args, kwargs)

    if kwargs is not None:
        result = converted_f(*effective_args, **kwargs)
    else:
        result = converted_f(*effective_args)

    return result
示例#7
0
def converted_call(f, owner, options, args, kwargs):
  """Compiles a function call inline. For internal use only."""
  if owner is not None:
    if not isinstance(f, str):
      raise ValueError(
          'When owner is specified, the function name must be specified as'
          ' a string: {}'.format(f))
    owner_attr = f

    # Special case when the owner is a 'super' object. In that case lookups of
    # dynamic attributes won't work. See
    # inspect_utils.SuperWrapperForDynamicAttrs.
    if isinstance(owner, super):
      owner = inspect_utils.SuperWrapperForDynamicAttrs(owner)

    f = getattr(owner, f)

  if logging.has_verbosity(1):
    if owner is not None:
      composite_desc = '("{}" attr of {})'.format(owner_attr, owner)
    else:
      composite_desc = ''

    logging.log(1,
                'Converted call: %s %s\n    args: %s\n    kwargs: %s\n',
                f, composite_desc, args, kwargs)

  if inspect_utils.isbuiltin(f):
    if kwargs:
      return py_builtins.overload_of(f)(*args, **kwargs)
    else:
      return py_builtins.overload_of(f)(*args)

  # TODO(b/122265385): Remove this bypass.
  if (_is_known_loaded_type(f, 'wrapt', 'FunctionWrapper') or
      _is_known_loaded_type(f, 'wrapt', 'BoundFunctionWrapper')):
    logging.warn(
        'Entity {} appears to be decorated by wrapt, which is not yet supported'
        ' by AutoGraph. The function will be called without transformation.'
        ' You may however apply AutoGraph before the decorator.'.format(f))
    logging.log(2, 'Permanently whitelisted: %s: wrapt decorated', f)
    return _call_unconverted(f, args, kwargs)

  if _is_known_loaded_type(f, 'functools', '_lru_cache_wrapper'):
    logging.log(2, 'Permanently whitelisted: %s: lru_cache', f)
    return _call_unconverted(f, args, kwargs)

  # Constructors are permanently whitelisted.
  # TODO(mdan): Toggle as experimental feature instead.
  # TODO(b/124016764): Remove this limitation.
  if tf_inspect.isclass(f):
    logging.log(2, 'Permanently whitelisted: %s: constructor', f)
    return _call_unconverted(f, args, kwargs)

  # Other built-in modules are permanently whitelisted.
  # TODO(mdan): Figure out how to do this consistently for all stdlib modules.
  if any(f in m.__dict__.values() for m in (collections, pdb, copy, inspect)):
    logging.log(2, 'Permanently whitelisted: %s: part of builtin module', f)
    return _call_unconverted(f, args, kwargs)

  if not options.force_conversion and conversion.is_whitelisted_for_graph(f):
    return _call_unconverted(f, args, kwargs)

  # internal_convert_user_code is for example turned off when issuing a dynamic
  # call conversion from generated code while in nonrecursive mode. In that
  # case we evidently don't want to recurse, but we still have to convert
  # things like builtins.
  if not options.internal_convert_user_code:
    return _call_unconverted(f, args, kwargs)

  # TODO(mdan): Move this entire block inside to_graph.
  try:  # Begin of transformation error guards

    # Unwrap functools.partial objects
    # TODO(mdan): Consider sharing unwrapping logic with tf_inspect.
    while isinstance(f, functools.partial):
      args = f.args + args
      new_kwargs = {}
      if f.keywords is not None:
        new_kwargs.update(f.keywords)
      if kwargs is not None:
        new_kwargs.update(kwargs)
      kwargs = new_kwargs
      f = f.func

    if tf_inspect.isfunction(f) or tf_inspect.ismethod(f):
      # Regular functions
      target_entity = f
      f_self = inspect_utils.getmethodself(f)

      # TODO(b/119246461): This may be more elegantly handled using __get__?
      if f_self is not None:
        effective_args = (f_self,) + args
      else:
        effective_args = args

    elif tf_inspect.isclass(f):
      # Constructors
      # Note: Until we support class constructurs, and enable whole-class
      # conversion with an experimental flag, this branch is dead code.
      # TODO(mdan): Consider removing unless there is a compelling use case.
      target_entity = f
      effective_args = args

    elif hasattr(f, '__call__') and hasattr(f, '__class__'):
      # Callable objects
      target_entity = f.__call__
      effective_args = (f,) + args

    else:
      target_entity = f
      raise NotImplementedError('unknown callable type "%s"' % type(f))

    if (not tf_inspect.isclass(target_entity) and
        not hasattr(target_entity, '__code__')):
      logging.log(
          2, 'Permanently whitelisted: %s: native binding', target_entity)
      return _call_unconverted(f, args, kwargs)

    converted_f = to_graph(
        target_entity,
        recursive=options.recursive,
        arg_values=None,
        arg_types=None,
        experimental_optional_features=options.optional_features)

    if logging.has_verbosity(2):
      logging.log(2, 'Defaults of %s : %s', converted_f,
                  converted_f.__defaults__)
      if kwargs is not None:
        callargs = tf_inspect.getcallargs(
            converted_f, *effective_args, **kwargs)
      else:
        callargs = tf_inspect.getcallargs(converted_f, *effective_args)
      formatted_callargs = '\n'.join(
          '    {}: {}'.format(k, v) for k, v in callargs.items())
      logging.log(2, 'Calling %s with\n%s\n', converted_f, formatted_callargs)

  # TODO(mdan): Reduce this list.
  except (errors.AutoGraphError, AssertionError, AttributeError, IndexError,
          KeyError, NameError, NotImplementedError, SyntaxError, TypeError,
          ValueError, IOError) as e:

    logging.log(1, 'Error transforming entity %s', target_entity, exc_info=True)

    if is_autograph_strict_conversion_mode():
      raise

    logging.warn(
        'Entity %s could not be transformed and will be executed as-is.'
        ' Some features (e.g. tensor-dependent conditionals and loops) may not'
        ' work as expected.'
        ' Error details can be found in the logs when running with the env'
        ' variable AUTOGRAPH_VERBOSITY >= 1. Please report this to the'
        ' AutoGraph team. Cause: %s', target_entity, e)

    return _call_unconverted(f, args, kwargs)

  if kwargs is not None:
    result = converted_f(*effective_args, **kwargs)
  else:
    result = converted_f(*effective_args)

  return result
示例#8
0
def converted_call(f, options, args, kwargs, caller_fn_scope=None):
    """Compiles a function call inline.

  For internal use only.

  Args:
    f: The function to convert.
    options: converter.ConversionOptions
    args: Tuple, the original positional arguments of f
    kwargs: Dict, the original keyword arguments of f
    caller_fn_scope: Optional[function_wrappers.FunctionScope], the function
      scope of the converted function in which this call was originally made.

  Returns:
    Any, the result of executing a possibly-converted `f` with the given
      arguments.
  """
    logging.log(1, 'Converted call: %s\n    args: %s\n    kwargs: %s\n', f,
                args, kwargs)

    if conversion.check_cached_unconverted(f, options):
        return _call_unconverted(f, args, kwargs, options, False)

    if inspect_utils.isbuiltin(f):
        if f is eval:
            return py_builtins.eval_in_original_context(
                f, args, caller_fn_scope)
        if f is super:
            return py_builtins.super_in_original_context(
                f, args, caller_fn_scope)
        if kwargs:
            return py_builtins.overload_of(f)(*args, **kwargs)
        else:
            return py_builtins.overload_of(f)(*args)

    # TODO(mdan): Clean up the naming inconsistency.
    if hasattr(f, 'autograph_info__') or hasattr(f, '__ag_compiled'):
        logging.log(2, 'Permanently whitelisted: %s: already converted', f)
        return _call_unconverted(f, args, kwargs, options)

    # TODO(b/122265385): Remove this bypass.
    if (_is_known_loaded_type(f, 'wrapt', 'FunctionWrapper')
            or _is_known_loaded_type(f, 'wrapt', 'BoundFunctionWrapper')):
        logging.warn(
            '{} appears to be decorated by wrapt, which is not yet supported'
            ' by AutoGraph. The function will run as-is.'
            ' You may still apply AutoGraph before the wrapt decorator.'.
            format(f))
        logging.log(2, 'Permanently whitelisted: %s: wrapt decorated', f)
        return _call_unconverted(f, args, kwargs, options)

    if _is_known_loaded_type(f, 'functools', '_lru_cache_wrapper'):
        logging.log(2, 'Permanently whitelisted: %s: lru_cache', f)
        return _call_unconverted(f, args, kwargs, options)

    # Constructors are permanently whitelisted.
    # TODO(mdan): Toggle as experimental feature instead.
    # TODO(b/124016764): Remove this limitation.
    if tf_inspect.isclass(f):
        logging.log(2, 'Permanently whitelisted: %s: constructor', f)
        return _call_unconverted(f, args, kwargs, options)

    # Other built-in modules are permanently whitelisted.
    # TODO(mdan): Figure out how to do this consistently for all stdlib modules.
    if any(f in m.__dict__.values()
           for m in (collections, pdb, copy, inspect, re)):
        logging.log(2, 'Permanently whitelisted: %s: part of builtin module',
                    f)
        return _call_unconverted(f, args, kwargs, options)

    # Custom ops and kernels are also permanently whitelisted.
    # See tensorflow.framework.load_library.
    if (hasattr(f, '__module__')
            and hasattr(f.__module__, '_IS_TENSORFLOW_PLUGIN')):
        logging.log(2, 'Permanently whitelisted: %s: TensorFlow plugin', f)
        return _call_unconverted(f, args, kwargs, options)

    if not options.user_requested and conversion.is_whitelisted_for_graph(f):
        return _call_unconverted(f, args, kwargs, options)

    # internal_convert_user_code is for example turned off when issuing a dynamic
    # call conversion from generated code while in nonrecursive mode. In that
    # case we evidently don't want to recurse, but we still have to convert
    # things like builtins.
    if not options.internal_convert_user_code:
        return _call_unconverted(f, args, kwargs, options)

    # TODO(mdan): Move this entire block inside to_graph.
    try:  # Begin of transformation error guards

        # Unwrap functools.partial objects
        # TODO(mdan): Consider sharing unwrapping logic with tf_inspect.
        # TODO(b/120224672): This unwrapping should be done before the checks above.
        while isinstance(f, functools.partial):
            args = f.args + args
            new_kwargs = {}
            if f.keywords is not None:
                new_kwargs.update(f.keywords)
            if kwargs is not None:
                new_kwargs.update(kwargs)
            kwargs = new_kwargs
            f = f.func

        if tf_inspect.isfunction(f) or tf_inspect.ismethod(f):
            # Regular functions
            target_entity = f
            f_self = inspect_utils.getmethodself(f)

            # TODO(b/119246461): This may be more elegantly handled using __get__?
            if f_self is not None:
                effective_args = (f_self, ) + args
            else:
                effective_args = args

        elif hasattr(f, '__call__') and hasattr(f, '__class__'):
            # Callable objects
            target_entity = f.__call__
            effective_args = (f, ) + args

        elif tf_inspect.isclass(f):
            # Constructors
            # Note: Until we support class constructurs, and enable whole-class
            # conversion with an experimental flag, this branch is dead code.
            # TODO(mdan): Consider removing unless there is a compelling use case.
            target_entity = f
            effective_args = args

        else:
            target_entity = f
            raise NotImplementedError('unknown callable type "%s"' % type(f))

        if not tf_inspect.isclass(target_entity):
            if not hasattr(target_entity, '__code__'):
                logging.log(2, 'Permanently whitelisted: %s: native binding',
                            target_entity)
                return _call_unconverted(f, args, kwargs, options)
            elif (hasattr(target_entity.__code__, 'co_filename')
                  and target_entity.__code__.co_filename == '<string>'):
                # TODO(mdan): __globals__['txt'] might work in Py3.
                logging.log(
                    2, 'Permanently whitelisted: %s: dynamic code (exec?)',
                    target_entity)
                return _call_unconverted(f, args, kwargs, options)

        program_ctx = converter.ProgramContext(
            options=options,
            autograph_module=tf_inspect.getmodule(converted_call))
        converted_f = conversion.convert(target_entity, program_ctx)

        if logging.has_verbosity(2):
            logging.log(2, 'Defaults of %s : %s', converted_f,
                        converted_f.__defaults__)
            if six.PY3:
                logging.log(2, 'KW defaults of %s : %s', converted_f,
                            converted_f.__kwdefaults__)

            if kwargs is not None:
                callargs = tf_inspect.getcallargs(converted_f, *effective_args,
                                                  **kwargs)
            else:
                callargs = tf_inspect.getcallargs(converted_f, *effective_args)

            formatted_callargs = '\n'.join('    {}: {}'.format(k, v)
                                           for k, v in callargs.items())
            logging.log(2, 'Calling %s with\n%s\n', converted_f,
                        formatted_callargs)

    except Exception as e:  # pylint:disable=broad-except
        logging.log(1,
                    'Error transforming entity %s',
                    target_entity,
                    exc_info=True)
        if is_autograph_strict_conversion_mode():
            raise
        if _errors_are_normally_possible(target_entity, e):
            logging.warn(
                'AutoGraph could not transform %s and will run it as-is.\n'
                'Cause: %s', target_entity, e)
        else:
            logging.warn(
                'AutoGraph could not transform %s and will run it as-is.\n'
                'Please report this to the TensorFlow team. When filing the bug, set'
                ' the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and'
                ' attach the full output.\n'
                'Cause: %s', target_entity, e)
        return _call_unconverted(f, args, kwargs, options)

    with StackTraceMapper(converted_f), tf_stack.CurrentModuleFilter():
        try:
            if kwargs is not None:
                result = converted_f(*effective_args, **kwargs)
            else:
                result = converted_f(*effective_args)
        except Exception as e:
            _attach_metadata(e, converted_f, True)
            raise

    return result
示例#9
0
def converted_call(f, args, kwargs, caller_fn_scope=None, options=None):
    """Compiles a function call inline.

  For internal use only.

  Note: The argument list is optimized for readability of generated code, which
  may look like this:

    ag__.converted_call(f, (arg1, arg2), None, fscope)
    ag__.converted_call(f, (), dict(arg1=val1, **kwargs), fscope)
    ag__.converted_call(f, (arg1, arg2) + varargs, dict(**kwargs), lscope)

  Args:
    f: The function to convert.
    args: Tuple, the original positional arguments of f
    kwargs: Optional[Dict], the original keyword arguments of f
    caller_fn_scope: Optional[function_wrappers.FunctionScope], the function
      scope of the converted function in which this call was originally made.
    options: Optional[converter.ConversionOptions], conversion options. If not
      specified, the value of caller_fn_scope.callopts is used. Either options
      or caller_fn_scope must be present.

  Returns:
    Any, the result of executing a possibly-converted `f` with the given
      arguments.
  """
    logging.log(1, 'Converted call: %s\n    args: %s\n    kwargs: %s\n', f,
                args, kwargs)

    if options is None:
        if caller_fn_scope is None:
            raise ValueError(
                'either caller_fn_scope or options must have a value')
        options = caller_fn_scope.callopts

    if conversion.is_in_whitelist_cache(f, options):
        logging.log(2, 'Whitelisted %s: from cache', f)
        return _call_unconverted(f, args, kwargs, options, False)

    if ag_ctx.control_status_ctx().status == ag_ctx.Status.DISABLED:
        logging.log(2, 'Whitelisted: %s: AutoGraph is disabled in context', f)
        return _call_unconverted(f, args, kwargs, options, False)

    if is_autograph_artifact(f):
        logging.log(2, 'Permanently whitelisted: %s: AutoGraph artifact', f)
        return _call_unconverted(f, args, kwargs, options)

    # If this is a partial, unwrap it and redo all the checks.
    if isinstance(f, functools.partial):
        new_kwargs = {}
        if f.keywords is not None:
            # Use copy to avoid mutating the underlying keywords.
            new_kwargs = f.keywords.copy()
        if kwargs is not None:
            new_kwargs.update(kwargs)
        new_args = f.args + args
        logging.log(3, 'Forwarding call of partial %s with\n%s\n%s\n', f,
                    new_args, new_kwargs)
        return converted_call(f.func,
                              new_args,
                              new_kwargs,
                              caller_fn_scope=caller_fn_scope,
                              options=options)

    if inspect_utils.isbuiltin(f):
        if f is eval:
            return py_builtins.eval_in_original_context(
                f, args, caller_fn_scope)
        if f is super:
            return py_builtins.super_in_original_context(
                f, args, caller_fn_scope)
        if kwargs:
            return py_builtins.overload_of(f)(*args, **kwargs)
        else:
            return py_builtins.overload_of(f)(*args)

    # TODO(b/122265385): Remove this bypass.
    if (_is_known_loaded_type(f, 'wrapt', 'FunctionWrapper')
            or _is_known_loaded_type(f, 'wrapt', 'BoundFunctionWrapper')):
        logging.warn(
            '{} appears to be decorated by wrapt, which is not yet supported'
            ' by AutoGraph. The function will run as-is.'
            ' You may still apply AutoGraph before the wrapt decorator.'.
            format(f))
        logging.log(2, 'Permanently whitelisted: %s: wrapt decorated', f)
        return _call_unconverted(f, args, kwargs, options)

    if _is_known_loaded_type(f, 'functools', '_lru_cache_wrapper'):
        logging.log(2, 'Permanently whitelisted: %s: lru_cache', f)
        return _call_unconverted(f, args, kwargs, options)

    # Constructors are permanently whitelisted.
    # TODO(mdan): Toggle as experimental feature instead.
    # TODO(b/124016764): Remove this limitation.
    if inspect_utils.isconstructor(f):
        logging.log(2, 'Permanently whitelisted: %s: constructor', f)
        return _call_unconverted(f, args, kwargs, options)

    # Other built-in modules are permanently whitelisted.
    # TODO(mdan): Figure out how to do this consistently for all stdlib modules.
    if any(f in m.__dict__.values()
           for m in (collections, pdb, copy, inspect, re)):
        logging.log(2, 'Permanently whitelisted: %s: part of builtin module',
                    f)
        return _call_unconverted(f, args, kwargs, options)

    # Custom ops and kernels are also permanently whitelisted.
    # See tensorflow.framework.load_library.
    if (hasattr(f, '__module__')
            and hasattr(f.__module__, '_IS_TENSORFLOW_PLUGIN')):
        logging.log(2, 'Permanently whitelisted: %s: TensorFlow plugin', f)
        return _call_unconverted(f, args, kwargs, options)

    if not options.user_requested and conversion.is_whitelisted(f):
        return _call_unconverted(f, args, kwargs, options)

    # internal_convert_user_code is for example turned off when issuing a dynamic
    # call conversion from generated code while in nonrecursive mode. In that
    # case we evidently don't want to recurse, but we still have to convert
    # things like builtins.
    if not options.internal_convert_user_code:
        return _call_unconverted(f, args, kwargs, options)

    # TODO(mdan): Move this entire block inside to_graph.
    try:  # Begin of transformation error guards

        if tf_inspect.isfunction(f) or tf_inspect.ismethod(f):
            # Regular functions
            target_entity = f
            f_self = inspect_utils.getmethodself(f)

            # TODO(b/119246461): This may be more elegantly handled using __get__?
            if f_self is not None:
                effective_args = (f_self, ) + args
            else:
                effective_args = args

        elif hasattr(f, '__class__') and hasattr(f.__class__, '__call__'):
            # Callable objects. Dunder methods have special lookup rules, see:
            # https://docs.python.org/3/reference/datamodel.html#specialnames
            target_entity = f.__class__.__call__
            effective_args = (f, ) + args

        else:
            target_entity = f
            raise NotImplementedError('unknown callable type "%s"' % type(f))

        if not tf_inspect.isclass(target_entity):
            if not hasattr(target_entity, '__code__'):
                logging.log(2, 'Permanently whitelisted: %s: native binding',
                            target_entity)
                return _call_unconverted(f, args, kwargs, options)
            elif (hasattr(target_entity.__code__, 'co_filename')
                  and target_entity.__code__.co_filename == '<string>'):
                # TODO(mdan): __globals__['txt'] might work in Py3.
                logging.log(
                    2, 'Permanently whitelisted: %s: dynamic code (exec?)',
                    target_entity)
                return _call_unconverted(f, args, kwargs, options)

        program_ctx = converter.ProgramContext(
            options=options,
            autograph_module=tf_inspect.getmodule(converted_call))
        converted_f = conversion.convert(target_entity, program_ctx)

        if logging.has_verbosity(2):
            logging.log(2, 'Defaults of %s : %s', converted_f,
                        converted_f.__defaults__)
            if not six.PY2:
                logging.log(2, 'KW defaults of %s : %s', converted_f,
                            converted_f.__kwdefaults__)

            if kwargs is not None:
                callargs = tf_inspect.getcallargs(converted_f, *effective_args,
                                                  **kwargs)
            else:
                callargs = tf_inspect.getcallargs(converted_f, *effective_args)

            formatted_callargs = '\n'.join('    {}: {}'.format(k, v)
                                           for k, v in callargs.items())
            logging.log(2, 'Calling %s with\n%s\n', converted_f,
                        formatted_callargs)

    except Exception as e:  # pylint:disable=broad-except
        logging.log(1,
                    'Error transforming entity %s',
                    target_entity,
                    exc_info=True)
        if is_autograph_strict_conversion_mode():
            raise

        warning_template = (
            'AutoGraph could not transform %s and will run it as-is.\n'
            '%s'
            'Cause: %s\n'
            'To silence this warning, decorate the function with'
            ' @tf.autograph.experimental.do_not_convert')
        if isinstance(e, errors.UnsupportedLanguageElementError):
            # Repeating the check made upon function entry because the state might
            # have updated in the meantime.
            if not conversion.is_in_whitelist_cache(f, options):
                logging.warn(warning_template, target_entity, '', e)
        else:
            file_bug_message = (
                'Please report this to the TensorFlow team. When filing the bug, set'
                ' the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and'
                ' attach the full output.\n')
            logging.warn(warning_template, target_entity, file_bug_message, e)

        return _call_unconverted(f, args, kwargs, options)

    with StackTraceMapper(converted_f), tf_stack.CurrentModuleFilter():
        try:
            if kwargs is not None:
                result = converted_f(*effective_args, **kwargs)
            else:
                result = converted_f(*effective_args)
        except Exception as e:
            _attach_metadata(e, converted_f)
            raise

    return result
示例#10
0
文件: api.py 项目: Wajih-O/tensorflow
def converted_call(f, owner, options, *args, **kwargs):
  """Compiles a function call inline. For internal use only."""
  logging.vlog(logging.DEBUG, 'Converted call: %s; owner: %s', f, owner)

  if owner is not None:
    if not isinstance(f, str):
      raise ValueError(
          'When owner is specified, the function name must be specified as'
          ' a string: {}'.format(f))

    # Special case when the owner is a 'super' object. In that case lookups of
    # dynamic attributes won't work. See
    # inspect_utils.SuperWrapperForDynamicAttrs.
    if isinstance(owner, super):
      owner = inspect_utils.SuperWrapperForDynamicAttrs(owner)

    f = getattr(owner, f)

  if inspect_utils.isbuiltin(f):
    return py_builtins.overload_of(f)(*args, **kwargs)

  # TODO(mdan): This needs cleanup.
  # In particular, we may want to avoid renaming functions altogether.
  if not options.force_conversion and conversion.is_whitelisted_for_graph(f):

    # TODO(mdan): This may be inconsistent in certain situations.
    # If the function had already been annotated with @tf.function, it
    # may be bound to the incorrect object. It's unclear if those situations
    # are possible, but if they happen, we need to check if f is bound
    # to a shim like WeakrefSelf and unpack it.

    # Args typically include `self`, as required by the conversion process.
    # When conversion is skipped, `self` is not necessary, because the
    # original bound method is being executed. This code removes it.
    if tf_inspect.ismethod(f) and args:
      f_self = inspect_utils.getmethodself(f)
      if args[0] is f_self:
        args = args[1:]

    return f(*args, **kwargs)

  # internal_convert_user_code is for example turned off when issuing a dynamic
  # call conversion from generated code while in nonrecursive mode. In that
  # case we evidently don't want to recurse, but we still have to convert
  # things like builtins.
  if not options.internal_convert_user_code:
    return f(*args, **kwargs)

  # Unwrap functools.partial objects
  # TODO(mdan): Consider sharing unwrapping logic with tf_inspect.
  while isinstance(f, functools.partial):
    args = f.args + args
    new_kwargs = {}
    if f.keywords is not None:
      new_kwargs.update(f.keywords)
    new_kwargs.update(kwargs)
    kwargs = new_kwargs
    f = f.func

  if tf_inspect.isfunction(f) or tf_inspect.ismethod(f):
    # Regular functions
    target_entity = f
    arg_map_target = f
    f_self = inspect_utils.getmethodself(f)

    # TODO(b/119246461): This may be more elegantly handled using __get__?
    if f_self is not None:
      # If this is a method call, it may or may not include self.
      #
      # Example when self is included:
      #   converted_call(to_graph(foo.bar), foo)
      #
      # Example when self is not included:
      #   super(...).foo(args)
      #
      if owner is not None and (not args or args[0] is not owner):
        effective_args = (owner,) + args
      else:
        # When the owner is not specified, use the result of
        # inspect_utils.getmethodclass.
        # TODO(b/119246461): Make sure an owner is always specified.
        if not args or args[0] is not f_self:
          effective_args = (f_self,) + args
        else:
          effective_args = (f_self,) + args[1:]
      partial_types = (f_self,)
    else:
      effective_args = args
      partial_types = ()

  elif tf_inspect.isclass(f):
    # Constructors
    target_entity = f
    arg_map_target = f.__init__
    effective_args = args
    partial_types = ()

  elif hasattr(f, '__call__') and hasattr(f, '__class__'):
    # Callable objects
    target_entity = f.__call__
    arg_map_target = f.__call__
    effective_args = (f,) + args
    partial_types = (f.__class__,)

  else:
    raise NotImplementedError('unknown callable type "%s"' % type(f))

  arg_values = tf_inspect.getcallargs(arg_map_target, *args, **kwargs)
  arg_types = {}
  for name, arg in arg_values.items():
    arg_class = arg.__class__
    arg_types[name] = (arg_class.__name__, arg_class)

  # When called from within a decorator, this is the only indication that
  # the function is a method - it appears that the decorator is applied
  # before the method is bound.
  if not partial_types:
    if 'self' in arg_values:
      if tf_inspect.isclass(arg_values['self'].__class__):
        partial_types = (arg_values['self'].__class__,)
    elif 'cls' in arg_values:
      if tf_inspect.isclass(arg_values['cls']):
        partial_types = (arg_values['cls'],)

  converted_f = to_graph(
      target_entity,
      recursive=options.recursive,
      arg_values=arg_values,
      arg_types=arg_types,
      experimental_optional_features=options.optional_features,
      experimental_strip_decorators=options.strip_decorators,
      experimental_verbose=options.verbose,
      experimental_partial_types=partial_types)

  result = converted_f(*effective_args, **kwargs)

  # The converted function's closure is simply inserted into the function's
  # module __dict__. Since modules are permanently cached, that results in
  # leaking the entire closure.
  # Normally, it's not safe to delete the module because that may release said
  # closure as well. However, in the case of converted_call we are certain the
  # function will not be executed again, so the closure should no longer be
  # needed so long as the function doesn't return any executable code.
  # TODO(mdan): Attach the closure properly, using cells.
  if all(map(_is_not_callable, nest.flatten(result))):
    del sys.modules[converted_f.__module__]

  return result