示例#1
0
def make_dataset(config, take_count, batch_size,
                 shard=False, synthetic=False):
    shuffle_buffer_size = 10000

    if synthetic:
        height = 224
        width = 224
        input_shape = [batch_size, height, width, 3]
        input_element = nest.map_structure(lambda s: tf.constant(0.5, tf.float32, s), tf.TensorShape(input_shape))
        label_element = nest.map_structure(lambda s: tf.constant(1, tf.int32, s), tf.TensorShape([batch_size, 1]))
        element = (input_element, label_element)
        ds = tf.data.Dataset.from_tensors(element).repeat()
        return ds


    filename_pattern = os.path.join(config.data_dir, '%s-*')
    filenames = tf.gfile.Glob(filename_pattern % 'train')

    ds = tf.data.TFRecordDataset.list_files(filenames, shuffle=False)
    ds = ds.interleave(tf.data.TFRecordDataset, cycle_length=10, block_length=1,num_parallel_calls=tf.data.experimental.AUTOTUNE)

    ds = ds.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
    counter = tf.data.Dataset.range(sys.maxsize)
    ds = tf.data.Dataset.zip((ds, counter))

    ds = ds.apply(tf.data.experimental.shuffle_and_repeat(shuffle_buffer_size))

    ds = ds.map(lambda image, counter: parse_record(image, True, config), num_parallel_calls=216)
    ds = ds.batch(batch_size, drop_remainder=True)
    ds = ds.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
    ds = threadpool.override_threadpool(ds,threadpool.PrivateThreadPool(128, display_name='input_pipeline_thread_pool'))
    return ds
示例#2
0
  def testOverrideThreadPool(self):

    def get_thread_id(_):
      # Python creates a dummy thread object to represent the current
      # thread when called from an "alien" thread (such as a
      # `PrivateThreadPool` thread in this case). It does not include
      # the TensorFlow-given display name, but it has a unique
      # identifier that maps one-to-one with the underlying OS thread.
      return np.array(threading.current_thread().ident).astype(np.int64)

    for num_threads in [1, 2, 4, 8, 16]:

      dataset = (
          Dataset.range(1000).map(
              lambda x: script_ops.py_func(get_thread_id, [x], dtypes.int64),
              num_parallel_calls=32).apply(unique.unique()))

      dataset = threadpool.override_threadpool(
          dataset,
          threadpool.PrivateThreadPool(
              num_threads, display_name='private_thread_pool_%d' % num_threads))

      thread_ids = []
      for next_element in datasets.Iterator(dataset):
        thread_ids.append(next_element)
      self.assertEqual(len(thread_ids), len(set(thread_ids)))
      self.assertGreater(len(thread_ids), 0)
      # NOTE(mrry): We don't control the thread pool scheduling, and
      # so cannot guarantee that all of the threads in the pool will
      # perform work.
      self.assertLessEqual(len(thread_ids), num_threads)
 def override_threadpool_fn(dataset):
   return threadpool.override_threadpool(
       dataset,
       threadpool.PrivateThreadPool(
           num_threads,
           max_intra_op_parallelism=max_intra_op_parallelism,
           display_name="private_thread_pool_%d" % num_threads))
示例#4
0
    def testOverrideThreadPool(self):
        def get_thread_id(_):
            # Python creates a dummy thread object to represent the current
            # thread when called from an "alien" thread (such as a
            # `PrivateThreadPool` thread in this case). It does not include
            # the TensorFlow-given display name, but it has a unique
            # identifier that maps one-to-one with the underlying OS thread.
            return np.array(threading.current_thread().ident).astype(np.int64)

        for num_threads in [1, 2, 4, 8, 16]:

            dataset = (Dataset.range(1000).map(
                lambda x: script_ops.py_func(get_thread_id, [x], dtypes.int64),
                num_parallel_calls=32).apply(unique.unique()))

            dataset = threadpool.override_threadpool(
                dataset,
                threadpool.PrivateThreadPool(
                    num_threads,
                    display_name='private_thread_pool_%d' % num_threads))

            thread_ids = []
            for next_element in datasets.Iterator(dataset):
                thread_ids.append(next_element)
            self.assertEqual(len(thread_ids), len(set(thread_ids)))
            self.assertGreater(len(thread_ids), 0)
            # NOTE(mrry): We don't control the thread pool scheduling, and
            # so cannot guarantee that all of the threads in the pool will
            # perform work.
            self.assertLessEqual(len(thread_ids), num_threads)
    def testOptimizationThreadPoolDataset(self):
        dataset = dataset_ops.Dataset.range(10).batch(10)

        dataset = threadpool.override_threadpool(
            dataset,
            threadpool.PrivateThreadPool(
                2, display_name="private_thread_pool_%d" % 2))

        dataset = dataset_ops._OptimizeDataset(dataset, [])
        self.assertDatasetProduces(dataset,
                                   expected_output=[list(range(10))],
                                   requires_initialization=True)
  def testOptimizationThreadPoolDataset(self):
    dataset = dataset_ops.Dataset.range(10).batch(10)

    dataset = threadpool.override_threadpool(
        dataset,
        threadpool.PrivateThreadPool(
            2, display_name="private_thread_pool_%d" % 2))

    dataset = dataset_ops._OptimizeDataset(dataset, [])
    self.assertDatasetProduces(
        dataset,
        expected_output=[list(range(10))],
        requires_initialization=True)
    def testOptimizationThreadPoolDataset(self):
        dataset = dataset_ops.Dataset.range(10).batch(10)

        dataset = threadpool.override_threadpool(
            dataset,
            threadpool.PrivateThreadPool(
                2, display_name="private_thread_pool_%d" % 2))

        options = dataset_ops.Options()
        options.experimental_optimization.apply_default_optimizations = False
        dataset = dataset.with_options(options)
        self.assertDatasetProduces(dataset,
                                   expected_output=[list(range(10))],
                                   requires_initialization=True)
  def testOptimizationThreadPoolDataset(self):
    dataset = dataset_ops.Dataset.range(10).batch(10)

    dataset = threadpool.override_threadpool(
        dataset,
        threadpool.PrivateThreadPool(
            2, display_name="private_thread_pool_%d" % 2))

    options = dataset_ops.Options()
    options.experimental_optimization.apply_default_optimizations = False
    dataset = dataset.with_options(options)
    self.assertDatasetProduces(
        dataset,
        expected_output=[list(range(10))],
        requires_initialization=True)
示例#9
0
def make_dataset(args, take_count, batch_size,
                 training=False, shard=False):

    shuffle_buffer_size = 10000
    num_readers = 10

    rank_size = int(os.getenv('RANK_SIZE'))
    # rank_id = int(os.getenv('DEVICE_INDEX'))
    rank_id = int(os.getenv('DEVICE_ID'))

    if training:
        filename_pattern = os.path.join(args.data_dir, '%s-*')
        filenames = sorted(tf.gfile.Glob(filename_pattern % 'train'))
    else:
        filename_pattern = os.path.join(args.data_dir, '%s-*')
        filenames = sorted(tf.gfile.Glob(filename_pattern % 'validation'))

    ds = tf.data.Dataset.from_tensor_slices(filenames)

    if not training:
        ds = ds.take(take_count)

    if training:
        # ds = ds.shuffle(1024, seed=7*(1+rank_id))
        ds = ds.shuffle(1024)

    ds = ds.interleave(tf.data.TFRecordDataset, cycle_length=num_readers, block_length=1, num_parallel_calls = tf.data.experimental.AUTOTUNE)

    #counter = tf.data.Dataset.range(sys.maxsize)
    #ds = tf.data.Dataset.zip((ds, counter))

    options = tf.data.Options()
    options.experimental_threading.max_intra_op_parallelism = 1
    ds = ds.with_options(options)
    ds = ds.prefetch(buffer_size = batch_size)

    if training:
        # ds = ds.apply(tf.data.experimental.shuffle_and_repeat(shuffle_buffer_size, seed=5*(1+rank_id)))
        ds = ds.shuffle(buffer_size = shuffle_buffer_size)
        ds = ds.repeat()

    ds = ds.map(lambda image: parse_record(image, training), num_parallel_calls=tf.data.experimental.AUTOTUNE)
    #ds = ds.map(lambda image, counter: parse_record(image, training), num_parallel_calls=24)
    ds = ds.batch(batch_size, drop_remainder=True)
    ds = ds.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
    ds = threadpool.override_threadpool(ds,
                                        threadpool.PrivateThreadPool(128,display_name='input_pipeline_threa_pool'))
    return ds
示例#10
0
    def testOptimizationThreadPoolDataset(self):
        dataset = dataset_ops.Dataset.range(10).batch(10)

        dataset = threadpool.override_threadpool(
            dataset,
            threadpool.PrivateThreadPool(
                2, display_name="private_thread_pool_%d" % 2))

        dataset = dataset_ops._OptimizeDataset(dataset, [])
        iterator = dataset.make_initializable_iterator()
        get_next = iterator.get_next()

        with self.cached_session() as sess:
            sess.run(iterator.initializer)
            self.assertAllEqual(list(range(10)), sess.run(get_next))
            with self.assertRaises(errors.OutOfRangeError):
                sess.run(get_next)
示例#11
0
  def testOptimizationThreadPoolDataset(self):
    dataset = dataset_ops.Dataset.range(10).batch(10)

    dataset = threadpool.override_threadpool(
        dataset,
        threadpool.PrivateThreadPool(
            2, display_name="private_thread_pool_%d" % 2))

    dataset = dataset_ops._OptimizeDataset(dataset, [])
    iterator = dataset.make_initializable_iterator()
    get_next = iterator.get_next()

    with self.cached_session() as sess:
      sess.run(iterator.initializer)
      self.assertAllEqual(list(range(10)), sess.run(get_next))
      with self.assertRaises(errors.OutOfRangeError):
        sess.run(get_next)
  def testNumThreads(self, num_threads, max_intra_op_parallelism):

    def get_thread_id(_):
      # Python creates a dummy thread object to represent the current
      # thread when called from an "alien" thread (such as a
      # `PrivateThreadPool` thread in this case). It does not include
      # the TensorFlow-given display name, but it has a unique
      # identifier that maps one-to-one with the underlying OS thread.
      return np.array(threading.current_thread().ident).astype(np.int64)

    dataset = (
        dataset_ops.Dataset.range(1000).map(
            lambda x: script_ops.py_func(get_thread_id, [x], dtypes.int64),
            num_parallel_calls=32).apply(unique.unique()))

    dataset = threadpool.override_threadpool(
        dataset,
        threadpool.PrivateThreadPool(
            num_threads,
            max_intra_op_parallelism=max_intra_op_parallelism,
            display_name="private_thread_pool_%d" % num_threads))

    iterator = dataset.make_initializable_iterator()
    next_element = iterator.get_next()

    with self.cached_session() as sess:
      sess.run(iterator.initializer)
      thread_ids = []
      try:
        while True:
          thread_ids.append(sess.run(next_element))
      except errors.OutOfRangeError:
        pass
      self.assertEqual(len(thread_ids), len(set(thread_ids)))
      self.assertGreater(len(thread_ids), 0)
      # NOTE(mrry): We don't control the thread pool scheduling, and
      # so cannot guarantee that all of the threads in the pool will
      # perform work.
      self.assertLessEqual(len(thread_ids), num_threads)
示例#13
0
  def testNumThreads(self, num_threads, max_intra_op_parallelism):

    def get_thread_id(_):
      # Python creates a dummy thread object to represent the current
      # thread when called from an "alien" thread (such as a
      # `PrivateThreadPool` thread in this case). It does not include
      # the TensorFlow-given display name, but it has a unique
      # identifier that maps one-to-one with the underlying OS thread.
      return np.array(threading.current_thread().ident).astype(np.int64)

    dataset = (
        dataset_ops.Dataset.range(1000).map(
            lambda x: script_ops.py_func(get_thread_id, [x], dtypes.int64),
            num_parallel_calls=32).apply(unique.unique()))

    dataset = threadpool.override_threadpool(
        dataset,
        threadpool.PrivateThreadPool(
            num_threads,
            max_intra_op_parallelism=max_intra_op_parallelism,
            display_name="private_thread_pool_%d" % num_threads))

    iterator = dataset.make_initializable_iterator()
    next_element = iterator.get_next()

    with self.cached_session() as sess:
      self.evaluate(iterator.initializer)
      thread_ids = []
      try:
        while True:
          thread_ids.append(sess.run(next_element))
      except errors.OutOfRangeError:
        pass
      self.assertEqual(len(thread_ids), len(set(thread_ids)))
      self.assertGreater(len(thread_ids), 0)
      # NOTE(mrry): We don't control the thread pool scheduling, and
      # so cannot guarantee that all of the threads in the pool will
      # perform work.
      self.assertLessEqual(len(thread_ids), num_threads)
示例#14
0
def make_dataset_eval(config, take_count, batch_size,
                 shard=False, synthetic=False):


    filename_pattern = os.path.join(config.data_dir, '%s-*')
    filenames = sorted(tf.gfile.Glob(filename_pattern % 'validation'))

    ds = tf.data.TFRecordDataset.list_files(filenames, shuffle=False)

    ds = ds.interleave(tf.data.TFRecordDataset, cycle_length=10, block_length=1)

    
    ds = ds.take(take_count)  # make sure all ranks have the same amount

    ds = ds.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
    counter = tf.data.Dataset.range(sys.maxsize)
    ds = tf.data.Dataset.zip((ds, counter))

    ds = ds.map(lambda image, counter: parse_record(image, False, config), num_parallel_calls=64)
    ds = ds.batch(batch_size, drop_remainder=True)
    ds = ds.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
    ds = threadpool.override_threadpool(ds,threadpool.PrivateThreadPool(128, display_name='input_pipeline_thread_pool'))
    return ds