def _make_reduce_func(self, reduce_func, input_dataset): """Make wrapping Defun for reduce_func.""" nested_dataset = dataset_ops._NestedDatasetComponent(input_dataset) # pylint: disable=protected-access wrapped_func = dataset_ops.StructuredFunctionWrapper( reduce_func, "tf.contrib.data.reduce_by_window()", input_classes=(ops.Tensor, nested_dataset), input_shapes=(tensor_shape.scalar(), nested_dataset), input_types=(dtypes.int64, nested_dataset), experimental_nested_dataset_support=True) if not isinstance( wrapped_func.output_classes, dataset_ops._NestedDatasetComponent): # pylint: disable=protected-access raise TypeError("`reduce_func` must return a `Dataset` object.") self._output_classes = wrapped_func.output_classes.output_classes self._output_types = wrapped_func.output_types.output_types self._output_shapes = wrapped_func.output_shapes.output_shapes self._reduce_func = wrapped_func.function
def _make_reduce_func(self, reduce_func, input_dataset): """Make wrapping defun for reduce_func.""" nested_dataset = dataset_ops._NestedDatasetComponent(input_dataset) # pylint: disable=protected-access wrapped_func = dataset_ops.StructuredFunctionWrapper( reduce_func, self._transformation_name(), input_classes=(ops.Tensor, nested_dataset), input_shapes=(tensor_shape.scalar(), nested_dataset), input_types=(dtypes.int64, nested_dataset)) if not isinstance( wrapped_func.output_classes, dataset_ops._NestedDatasetComponent): # pylint: disable=protected-access raise TypeError("`reduce_func` must return a `Dataset` object.") self._output_classes = wrapped_func.output_classes.output_classes self._output_types = wrapped_func.output_types.output_types self._output_shapes = wrapped_func.output_shapes.output_shapes self._reduce_func = wrapped_func.function
def _make_reduce_func(self, reduce_func, input_dataset): """Make wrapping defun for reduce_func.""" nested_dataset = dataset_ops._NestedDatasetComponent(input_dataset) # pylint: disable=protected-access wrapped_func = dataset_ops.StructuredFunctionWrapper( reduce_func, self._transformation_name(), input_classes=(ops.Tensor, nested_dataset), input_shapes=(tensor_shape.scalar(), nested_dataset), input_types=(dtypes.int64, nested_dataset)) if not isinstance(wrapped_func.output_classes, dataset_ops._NestedDatasetComponent): # pylint: disable=protected-access raise TypeError("`reduce_func` must return a `Dataset` object.") self._output_classes = wrapped_func.output_classes.output_classes self._output_types = wrapped_func.output_types.output_types self._output_shapes = wrapped_func.output_shapes.output_shapes self._reduce_func = wrapped_func.function
def _make_reduce_func(self, reduce_func, input_dataset): """Make wrapping Defun for reduce_func.""" nested_dataset = dataset_ops._NestedDatasetComponent(input_dataset) # pylint: disable=protected-access wrapped_func = dataset_ops.StructuredFunctionWrapper( reduce_func, "tf.contrib.data.reduce_by_window()", input_classes=(ops.Tensor, nested_dataset), input_shapes=(tensor_shape.scalar(), nested_dataset), input_types=(dtypes.int64, nested_dataset), experimental_nested_dataset_support=True) if not isinstance(wrapped_func.output_classes, dataset_ops._NestedDatasetComponent): # pylint: disable=protected-access raise TypeError("`reduce_func` must return a `Dataset` object.") self._output_classes = wrapped_func.output_classes.output_classes self._output_types = wrapped_func.output_types.output_types self._output_shapes = wrapped_func.output_shapes.output_shapes self._reduce_func = wrapped_func.function
def __init__(self, input_dataset, window_size): """See `window_dataset()` for more details.""" super(_WindowDataset, self).__init__() self._input_dataset = input_dataset self._window_size = ops.convert_to_tensor( window_size, dtype=dtypes.int64, name="window_size") self._output_classes = nest.pack_sequence_as( input_dataset.output_classes, [ dataset_ops._NestedDatasetComponent( # pylint: disable=protected-access output_classes=output_class, output_shapes=output_shape, output_types=output_type) for output_class, output_shape, output_type in zip( nest.flatten(input_dataset.output_classes), nest.flatten(input_dataset.output_shapes), nest.flatten(input_dataset.output_types)) ]) self._output_shapes = self._output_classes self._output_types = self._output_classes
def __init__(self, input_dataset, window_size): """See `window_dataset()` for more details.""" super(_WindowDataset, self).__init__() self._input_dataset = input_dataset self._window_size = ops.convert_to_tensor(window_size, dtype=dtypes.int64, name="window_size") self._output_classes = nest.pack_sequence_as( input_dataset.output_classes, [ dataset_ops._NestedDatasetComponent( # pylint: disable=protected-access output_classes=output_class, output_shapes=output_shape, output_types=output_type) for output_class, output_shape, output_type in zip( nest.flatten(input_dataset.output_classes), nest.flatten(input_dataset.output_shapes), nest.flatten(input_dataset.output_types)) ]) self._output_shapes = self._output_classes self._output_types = self._output_classes