示例#1
0
 def _create_linear_model(self, feature_cols, partitioner):
     cols_to_vars = {}
     with variable_scope.variable_scope("", partitioner=partitioner):
         # Create the variables.
         fc.linear_model(features=self._create_dummy_inputs(),
                         feature_columns=feature_cols,
                         units=1,
                         cols_to_vars=cols_to_vars)
     # Return a dictionary mapping each column to its variable.
     return cols_to_vars
 def _create_linear_model(self, feature_cols, partitioner):
   cols_to_vars = {}
   with variable_scope.variable_scope("", partitioner=partitioner):
     # Create the variables.
     fc.linear_model(
         features=self._create_dummy_inputs(),
         feature_columns=feature_cols,
         units=1,
         cols_to_vars=cols_to_vars)
   # Return a dictionary mapping each column to its variable.
   return cols_to_vars
 def _create_linear_model(self, feature_cols, partitioner):
     cols_to_vars = {}
     with variable_scope.variable_scope("", partitioner=partitioner):
         # Create the variables.
         fc.linear_model(features=self._create_dummy_inputs(),
                         feature_columns=feature_cols,
                         units=1,
                         cols_to_vars=cols_to_vars)
     # Return a dictionary mapping each column to its variable, dropping the
     # 'bias' key that's also filled.
     cols_to_vars.pop("bias")
     return cols_to_vars
 def _create_linear_model(self, feature_cols, partitioner):
   cols_to_vars = {}
   with variable_scope.variable_scope("", partitioner=partitioner):
     # Create the variables.
     fc.linear_model(
         features=self._create_dummy_inputs(),
         feature_columns=feature_cols,
         units=1,
         cols_to_vars=cols_to_vars)
   # Return a dictionary mapping each column to its variable, dropping the
   # 'bias' key that's also filled.
   cols_to_vars.pop("bias")
   return cols_to_vars
  def linear_logit_fn(features):
    """Linear model logit_fn.

    Args:
      features: This is the first item returned from the `input_fn`
                passed to `train`, `evaluate`, and `predict`. This should be a
                single `Tensor` or `dict` of same.

    Returns:
      A `Tensor` representing the logits.
    """
    cols_to_vars = {}
    logits = feature_column_lib.linear_model(
        features=features,
        feature_columns=feature_columns,
        units=units,
        sparse_combiner=sparse_combiner,
        cols_to_vars=cols_to_vars)
    bias = cols_to_vars.pop('bias')
    if units > 1:
      summary.histogram('bias', bias)
    else:
      # If units == 1, the bias value is a length-1 list of a scalar Tensor,
      # so we should provide a scalar summary.
      summary.scalar('bias', bias[0][0])
    summary.scalar('fraction_of_zero_weights',
                   _compute_fraction_of_zero(cols_to_vars))
    return logits
示例#6
0
def _linear_model_fn(features, labels, mode, head, feature_columns, optimizer,
                     partitioner, config):
  """A model_fn for linear models that use a gradient-based optimizer.

  Args:
    features: dict of `Tensor`.
    labels: `Tensor` of shape `[batch_size, logits_dimension]`.
    mode: Defines whether this is training, evaluation or prediction.
      See `ModeKeys`.
    head: A `Head` instance.
    feature_columns: An iterable containing all the feature columns used by
      the model.
    optimizer: string, `Optimizer` object, or callable that defines the
      optimizer to use for training. If `None`, will use a FTRL optimizer.
    partitioner: Partitioner for variables.
    config: `RunConfig` object to configure the runtime settings.

  Returns:
    An `EstimatorSpec` instance.

  Raises:
    ValueError: mode or params are invalid, or features has the wrong type.
  """
  if not isinstance(features, dict):
    raise ValueError('features should be a dictionary of `Tensor`s. '
                     'Given type: {}'.format(type(features)))
  optimizer = optimizers.get_optimizer_instance(
      optimizer or _get_default_optimizer(feature_columns),
      learning_rate=_LEARNING_RATE)
  num_ps_replicas = config.num_ps_replicas if config else 0

  partitioner = partitioner or (
      partitioned_variables.min_max_variable_partitioner(
          max_partitions=num_ps_replicas,
          min_slice_size=64 << 20))

  with variable_scope.variable_scope(
      'linear',
      values=tuple(six.itervalues(features)),
      partitioner=partitioner):

    logits = feature_column_lib.linear_model(
        features=features,
        feature_columns=feature_columns,
        units=head.logits_dimension)

    def _train_op_fn(loss):
      """Returns the op to optimize the loss."""
      return optimizer.minimize(
          loss,
          global_step=training_util.get_global_step())

    return head.create_estimator_spec(
        features=features,
        mode=mode,
        labels=labels,
        train_op_fn=_train_op_fn,
        logits=logits)
示例#7
0
def _linear_model_fn(features, labels, mode, params, config):
  """A model_fn for linear models that use a gradient-based optimizer.

  Args:
    features: Dict of `Tensor`.
    labels: `Tensor` of shape `[batch_size, logits_dimension]`.
    mode: Defines whether this is training, evaluation or prediction.
      See `ModeKeys`.
    params: A dict of hyperparameters.
      The following hyperparameters are expected:
      * head: A `Head` instance.
      * feature_columns: An iterable containing all the feature columns used by
          the model.
      * optimizer: string, `Optimizer` object, or callable that defines the
          optimizer to use for training. If `None`, will use a FTRL optimizer.
    config: `RunConfig` object to configure the runtime settings.

  Returns:
    An `EstimatorSpec` instance.

  Raises:
    ValueError: If mode or params are invalid.
  """
  head = params['head']
  feature_columns = tuple(params['feature_columns'])
  optimizer = optimizers.get_optimizer_instance(
      params.get('optimizer') or _get_default_optimizer(feature_columns),
      learning_rate=_LEARNING_RATE)
  num_ps_replicas = config.num_ps_replicas if config else 0

  partitioner = params.get('partitioner') or (
      partitioned_variables.min_max_variable_partitioner(
          max_partitions=num_ps_replicas,
          min_slice_size=64 << 20))

  with variable_scope.variable_scope(
      'linear',
      values=tuple(six.itervalues(features)),
      partitioner=partitioner):

    logits = feature_column_lib.linear_model(
        features=features,
        feature_columns=feature_columns,
        units=head.logits_dimension)

    def _train_op_fn(loss):
      """Returns the op to optimize the loss."""
      return optimizer.minimize(
          loss,
          global_step=training_util.get_global_step())

    return head.create_estimator_spec(
        features=features,
        mode=mode,
        labels=labels,
        train_op_fn=_train_op_fn,
        logits=logits)
示例#8
0
def _linear_model_fn(features, labels, mode, head, feature_columns, optimizer,
                     partitioner, config):
    """A model_fn for linear models that use a gradient-based optimizer.

  Args:
    features: dict of `Tensor`.
    labels: `Tensor` of shape `[batch_size, logits_dimension]`.
    mode: Defines whether this is training, evaluation or prediction.
      See `ModeKeys`.
    head: A `Head` instance.
    feature_columns: An iterable containing all the feature columns used by
      the model.
    optimizer: string, `Optimizer` object, or callable that defines the
      optimizer to use for training. If `None`, will use a FTRL optimizer.
    partitioner: Partitioner for variables.
    config: `RunConfig` object to configure the runtime settings.

  Returns:
    An `EstimatorSpec` instance.

  Raises:
    ValueError: mode or params are invalid, or features has the wrong type.
  """
    if not isinstance(features, dict):
        raise ValueError('features should be a dictionary of `Tensor`s. '
                         'Given type: {}'.format(type(features)))
    optimizer = optimizers.get_optimizer_instance(
        optimizer or _get_default_optimizer(feature_columns),
        learning_rate=_LEARNING_RATE)
    num_ps_replicas = config.num_ps_replicas if config else 0

    partitioner = partitioner or (
        partitioned_variables.min_max_variable_partitioner(
            max_partitions=num_ps_replicas, min_slice_size=64 << 20))

    with variable_scope.variable_scope('linear',
                                       values=tuple(six.itervalues(features)),
                                       partitioner=partitioner):

        logits = feature_column_lib.linear_model(
            features=features,
            feature_columns=feature_columns,
            units=head.logits_dimension)

        def _train_op_fn(loss):
            """Returns the op to optimize the loss."""
            return optimizer.minimize(
                loss, global_step=training_util.get_global_step())

        return head.create_estimator_spec(features=features,
                                          mode=mode,
                                          labels=labels,
                                          train_op_fn=_train_op_fn,
                                          logits=logits)
示例#9
0
def _linear_model_fn(features, labels, mode, params, config):
    """A model_fn for linear models that use a gradient-based optimizer.

  Args:
    features: Dict of `Tensor`.
    labels: `Tensor` of shape `[batch_size, logits_dimension]`.
    mode: Defines whether this is training, evaluation or prediction.
      See `ModeKeys`.
    params: A dict of hyperparameters.
      The following hyperparameters are expected:
      * head: A `Head` instance.
      * feature_columns: An iterable containing all the feature columns used by
          the model.
      * optimizer: string, `Optimizer` object, or callable that defines the
          optimizer to use for training. If `None`, will use a FTRL optimizer.
    config: `RunConfig` object to configure the runtime settings.

  Returns:
    An `EstimatorSpec` instance.

  Raises:
    ValueError: If mode or params are invalid.
  """
    head = params['head']
    feature_columns = tuple(params['feature_columns'])
    optimizer = optimizers.get_optimizer_instance(
        params.get('optimizer') or _get_default_optimizer(feature_columns),
        learning_rate=_LEARNING_RATE)
    num_ps_replicas = config.num_ps_replicas if config else 0

    partitioner = params.get('partitioner') or (
        partitioned_variables.min_max_variable_partitioner(
            max_partitions=num_ps_replicas, min_slice_size=64 << 20))

    with variable_scope.variable_scope('linear',
                                       values=tuple(six.itervalues(features)),
                                       partitioner=partitioner):

        logits = feature_column_lib.linear_model(
            features=features,
            feature_columns=feature_columns,
            units=head.logits_dimension)

        def _train_op_fn(loss):
            """Returns the op to optimize the loss."""
            return optimizer.minimize(
                loss, global_step=training_util.get_global_step())

        return head.create_estimator_spec(features=features,
                                          mode=mode,
                                          labels=labels,
                                          train_op_fn=_train_op_fn,
                                          logits=logits)
示例#10
0
  def linear_logit_fn(features):
    """Linear model logit_fn.

    Args:
      features: This is the first item returned from the `input_fn`
                passed to `train`, `evaluate`, and `predict`. This should be a
                single `Tensor` or `dict` of same.

    Returns:
      A `Tensor` representing the logits.
    """
    return feature_column_lib.linear_model(
        features=features, feature_columns=feature_columns, units=units)
示例#11
0
def _dnn_linear_combined_model_fn(features,
                                  labels,
                                  mode,
                                  head,
                                  linear_feature_columns=None,
                                  linear_optimizer='Ftrl',
                                  dnn_feature_columns=None,
                                  dnn_optimizer='Adagrad',
                                  dnn_hidden_units=None,
                                  dnn_activation_fn=nn.relu,
                                  dnn_dropout=None,
                                  input_layer_partitioner=None,
                                  config=None):
    """Deep Neural Net and Linear combined model_fn.

  Args:
    features: dict of `Tensor`.
    labels: `Tensor` of shape [batch_size, 1] or [batch_size] labels of dtype
      `int32` or `int64` in the range `[0, n_classes)`.
    mode: Defines whether this is training, evaluation or prediction.
      See `ModeKeys`.
    head: A `Head` instance.
    linear_feature_columns: An iterable containing all the feature columns used
      by the Linear model.
    linear_optimizer: string, `Optimizer` object, or callable that defines the
      optimizer to use for training the Linear model. Defaults to the Ftrl
      optimizer.
    dnn_feature_columns: An iterable containing all the feature columns used by
      the DNN model.
    dnn_optimizer: string, `Optimizer` object, or callable that defines the
      optimizer to use for training the DNN model. Defaults to the Adagrad
      optimizer.
    dnn_hidden_units: List of hidden units per DNN layer.
    dnn_activation_fn: Activation function applied to each DNN layer. If `None`,
      will use `tf.nn.relu`.
    dnn_dropout: When not `None`, the probability we will drop out a given DNN
      coordinate.
    input_layer_partitioner: Partitioner for input layer.
    config: `RunConfig` object to configure the runtime settings.

  Returns:
    `ModelFnOps`

  Raises:
    ValueError: If both `linear_feature_columns` and `dnn_features_columns`
      are empty at the same time, or `input_layer_partitioner` is missing,
      or features has the wrong type.
  """
    if not isinstance(features, dict):
        raise ValueError('features should be a dictionary of `Tensor`s. '
                         'Given type: {}'.format(type(features)))
    if not linear_feature_columns and not dnn_feature_columns:
        raise ValueError(
            'Either linear_feature_columns or dnn_feature_columns must be defined.'
        )
    num_ps_replicas = config.num_ps_replicas if config else 0
    input_layer_partitioner = input_layer_partitioner or (
        partitioned_variables.min_max_variable_partitioner(
            max_partitions=num_ps_replicas, min_slice_size=64 << 20))

    # Build DNN Logits.
    dnn_parent_scope = 'dnn'

    if not dnn_feature_columns:
        dnn_logits = None
    else:
        dnn_optimizer = optimizers.get_optimizer_instance(
            dnn_optimizer, learning_rate=_DNN_LEARNING_RATE)
        _check_no_sync_replicas_optimizer(dnn_optimizer)
        if not dnn_hidden_units:
            raise ValueError(
                'dnn_hidden_units must be defined when dnn_feature_columns is '
                'specified.')
        dnn_partitioner = (partitioned_variables.min_max_variable_partitioner(
            max_partitions=num_ps_replicas))
        with variable_scope.variable_scope(dnn_parent_scope,
                                           values=tuple(
                                               six.itervalues(features)),
                                           partitioner=dnn_partitioner):
            with variable_scope.variable_scope(
                    'input', partitioner=input_layer_partitioner):
                net = feature_column_lib.input_layer(
                    features=features, feature_columns=dnn_feature_columns)

            for layer_id, num_hidden_units in enumerate(dnn_hidden_units):
                with variable_scope.variable_scope(
                        'hiddenlayer_%d' % layer_id,
                        values=(net, )) as dnn_hidden_layer_scope:
                    net = core_layers.dense(net,
                                            units=num_hidden_units,
                                            activation=dnn_activation_fn,
                                            kernel_initializer=init_ops.
                                            glorot_uniform_initializer(),
                                            name=dnn_hidden_layer_scope)
                    if dnn_dropout is not None and mode == model_fn.ModeKeys.TRAIN:
                        net = core_layers.dropout(net,
                                                  rate=dnn_dropout,
                                                  training=True)
                _add_layer_summary(net, dnn_hidden_layer_scope.name)

            with variable_scope.variable_scope(
                    'logits', values=(net, )) as dnn_logits_scope:
                dnn_logits = core_layers.dense(
                    net,
                    units=head.logits_dimension,
                    activation=None,
                    kernel_initializer=init_ops.glorot_uniform_initializer(),
                    name=dnn_logits_scope)
            _add_layer_summary(dnn_logits, dnn_logits_scope.name)

    linear_parent_scope = 'linear'

    if not linear_feature_columns:
        linear_logits = None
    else:
        linear_optimizer = optimizers.get_optimizer_instance(
            linear_optimizer,
            learning_rate=_linear_learning_rate(len(linear_feature_columns)))
        _check_no_sync_replicas_optimizer(linear_optimizer)
        with variable_scope.variable_scope(
                linear_parent_scope,
                values=tuple(six.itervalues(features)),
                partitioner=input_layer_partitioner) as scope:
            linear_logits = feature_column_lib.linear_model(
                features=features,
                feature_columns=linear_feature_columns,
                units=head.logits_dimension)
            _add_layer_summary(linear_logits, scope.name)

    # Combine logits and build full model.
    if dnn_logits is not None and linear_logits is not None:
        logits = dnn_logits + linear_logits
    elif dnn_logits is not None:
        logits = dnn_logits
    else:
        logits = linear_logits

    def _train_op_fn(loss):
        """Returns the op to optimize the loss."""
        train_ops = []
        global_step = training_util.get_global_step()
        if dnn_logits is not None:
            train_ops.append(
                dnn_optimizer.minimize(loss,
                                       var_list=ops.get_collection(
                                           ops.GraphKeys.TRAINABLE_VARIABLES,
                                           scope=dnn_parent_scope)))
        if linear_logits is not None:
            train_ops.append(
                linear_optimizer.minimize(
                    loss,
                    var_list=ops.get_collection(
                        ops.GraphKeys.TRAINABLE_VARIABLES,
                        scope=linear_parent_scope)))

        train_op = control_flow_ops.group(*train_ops)
        with ops.control_dependencies([train_op]):
            with ops.colocate_with(global_step):
                return state_ops.assign_add(global_step, 1)

    return head.create_estimator_spec(features=features,
                                      mode=mode,
                                      labels=labels,
                                      train_op_fn=_train_op_fn,
                                      logits=logits)
  def testWarmStartEmbeddingColumnLinearModel(self):
    # Create old and new vocabs for embedding column "sc_vocab".
    prev_vocab_path = self._write_vocab(["apple", "banana", "guava", "orange"],
                                        "old_vocab")
    new_vocab_path = self._write_vocab(
        ["orange", "guava", "banana", "apple", "raspberry", "blueberry"],
        "new_vocab")

    # Save checkpoint from which to warm-start.
    with ops.Graph().as_default() as g:
      with self.test_session(graph=g) as sess:
        variable_scope.get_variable(
            "linear_model/sc_vocab_embedding/embedding_weights",
            initializer=[[0.5, 0.4], [1., 1.1], [2., 2.2], [3., 3.3]])
        variable_scope.get_variable(
            "linear_model/sc_vocab_embedding/weights",
            initializer=[[0.69], [0.71]])
        self._write_checkpoint(sess)

    def _partitioner(shape, dtype):  # pylint:disable=unused-argument
      # Partition each var into 2 equal slices.
      partitions = [1] * len(shape)
      partitions[0] = min(2, shape[0].value)
      return partitions

    # Create feature columns.
    sc_vocab = fc.categorical_column_with_vocabulary_file(
        "sc_vocab", vocabulary_file=new_vocab_path, vocabulary_size=6)
    emb_vocab = fc.embedding_column(
        categorical_column=sc_vocab,
        dimension=2)
    all_deep_cols = [emb_vocab]
    # New graph, new session with warm-starting.
    with ops.Graph().as_default() as g:
      with self.test_session(graph=g) as sess:
        cols_to_vars = {}
        with variable_scope.variable_scope("", partitioner=_partitioner):
          # Create the variables.
          fc.linear_model(
              features=self._create_dummy_inputs(),
              feature_columns=all_deep_cols,
              cols_to_vars=cols_to_vars)

        # Construct the vocab_info for the embedding weight.
        vocab_info = ws_util.VocabInfo(
            new_vocab=sc_vocab.vocabulary_file,
            new_vocab_size=sc_vocab.vocabulary_size,
            num_oov_buckets=sc_vocab.num_oov_buckets,
            old_vocab=prev_vocab_path,
            # Can't use constant_initializer with load_and_remap.  In practice,
            # use a truncated normal initializer.
            backup_initializer=init_ops.random_uniform_initializer(
                minval=0.42, maxval=0.42))
        ws_settings = ws_util.WarmStartSettings(
            self.get_temp_dir(),
            vars_to_warm_start=".*sc_vocab.*",
            var_name_to_vocab_info={
                "linear_model/sc_vocab_embedding/embedding_weights": vocab_info
            })
        ws_util._warm_start(ws_settings)
        sess.run(variables.global_variables_initializer())
        # Verify weights were correctly warm-started. Var corresponding to
        # emb_vocab should be correctly warm-started after vocab remapping.
        # Missing values are filled in with the EmbeddingColumn's initializer.
        self._assert_cols_to_vars(
            cols_to_vars, {
                emb_vocab: [
                    # embedding_weights part 0.
                    np.array([[3., 3.3], [2., 2.2], [1., 1.1]]),
                    # embedding_weights part 1.
                    np.array([[0.5, 0.4], [0.42, 0.42], [0.42, 0.42]]),
                    # linear weights part 0.
                    np.array([[0.69]]),
                    # linear weights part 1.
                    np.array([[0.71]])
                ]
            }, sess)
示例#13
0
  def testWarmStartEmbeddingColumnLinearModel(self):
    # Create old and new vocabs for embedding column "sc_vocab".
    prev_vocab_path = self._write_vocab(["apple", "banana", "guava", "orange"],
                                        "old_vocab")
    new_vocab_path = self._write_vocab(
        ["orange", "guava", "banana", "apple", "raspberry", "blueberry"],
        "new_vocab")

    # Save checkpoint from which to warm-start.
    with ops.Graph().as_default() as g:
      with self.test_session(graph=g) as sess:
        variable_scope.get_variable(
            "linear_model/sc_vocab_embedding/embedding_weights",
            initializer=[[0.5, 0.4], [1., 1.1], [2., 2.2], [3., 3.3]])
        variable_scope.get_variable(
            "linear_model/sc_vocab_embedding/weights",
            initializer=[[0.69], [0.71]])
        self._write_checkpoint(sess)

    def _partitioner(shape, dtype):  # pylint:disable=unused-argument
      # Partition each var into 2 equal slices.
      partitions = [1] * len(shape)
      partitions[0] = min(2, shape[0].value)
      return partitions

    # Create feature columns.
    sc_vocab = fc.categorical_column_with_vocabulary_file(
        "sc_vocab", vocabulary_file=new_vocab_path, vocabulary_size=6)
    emb_vocab = fc.embedding_column(
        categorical_column=sc_vocab,
        dimension=2)
    all_deep_cols = [emb_vocab]
    # New graph, new session with warmstarting.
    with ops.Graph().as_default() as g:
      with self.test_session(graph=g) as sess:
        cols_to_vars = {}
        with variable_scope.variable_scope("", partitioner=_partitioner):
          # Create the variables.
          fc.linear_model(
              features=self._create_dummy_inputs(),
              feature_columns=all_deep_cols,
              cols_to_vars=cols_to_vars)

        # Construct the vocab_info for the embedding weight.
        vocab_info = ws_util._VocabInfo(
            new_vocab=sc_vocab.vocabulary_file,
            new_vocab_size=sc_vocab.vocabulary_size,
            num_oov_buckets=sc_vocab.num_oov_buckets,
            old_vocab=prev_vocab_path,
            # Can't use constant_initializer with load_and_remap.  In practice,
            # use a truncated normal initializer.
            backup_initializer=init_ops.random_uniform_initializer(
                minval=0.42, maxval=0.42)
        )
        ws_settings = ws_util._WarmStartSettings(
            self.get_temp_dir(),
            vars_to_warmstart=".*sc_vocab.*",
            var_name_to_vocab_info={
                "linear_model/sc_vocab_embedding/embedding_weights": vocab_info
            })
        ws_util._warmstart(ws_settings)
        sess.run(variables.global_variables_initializer())
        # Verify weights were correctly warmstarted. Var corresponding to
        # emb_vocab should be correctly warmstarted after vocab remapping.
        # Missing values are filled in with the EmbeddingColumn's initializer.
        self._assert_cols_to_vars(
            cols_to_vars, {
                emb_vocab: [
                    # embedding_weights part 0.
                    np.array([[3., 3.3], [2., 2.2], [1., 1.1]]),
                    # embedding_weights part 1.
                    np.array([[0.5, 0.4], [0.42, 0.42], [0.42, 0.42]]),
                    # linear weights part 0.
                    np.array([[0.69]]),
                    # linear weights part 1.
                    np.array([[0.71]])
                ]
            }, sess)
def _dnn_linear_combined_model_fn(
    features, labels, mode, head,
    linear_feature_columns=None, linear_optimizer='Ftrl',
    dnn_feature_columns=None, dnn_optimizer='Adagrad', dnn_hidden_units=None,
    dnn_activation_fn=nn.relu, dnn_dropout=None,
    input_layer_partitioner=None, config=None):
  """Deep Neural Net and Linear combined model_fn.

  Args:
    features: `Tensor` or dict of `Tensor` (depends on data passed to `fit`).
    labels: `Tensor` of shape [batch_size, 1] or [batch_size] labels of dtype
      `int32` or `int64` in the range `[0, n_classes)`.
    mode: Defines whether this is training, evaluation or prediction.
      See `ModeKeys`.
    head: A `Head` instance.
    linear_feature_columns: An iterable containing all the feature columns used
      by the Linear model.
    linear_optimizer: string, `Optimizer` object, or callable that defines the
      optimizer to use for training the Linear model. Defaults to the Ftrl
      optimizer.
    dnn_feature_columns: An iterable containing all the feature columns used by
      the DNN model.
    dnn_optimizer: string, `Optimizer` object, or callable that defines the
      optimizer to use for training the DNN model. Defaults to the Adagrad
      optimizer.
    dnn_hidden_units: List of hidden units per DNN layer.
    dnn_activation_fn: Activation function applied to each DNN layer. If `None`,
      will use `tf.nn.relu`.
    dnn_dropout: When not `None`, the probability we will drop out a given DNN
      coordinate.
    input_layer_partitioner: Partitioner for input layer.
    config: `RunConfig` object to configure the runtime settings.

  Returns:
    `ModelFnOps`

  Raises:
    ValueError: If both `linear_feature_columns` and `dnn_features_columns`
      are empty at the same time, or `input_layer_partitioner` is missing.
  """
  if not linear_feature_columns and not dnn_feature_columns:
    raise ValueError(
        'Either linear_feature_columns or dnn_feature_columns must be defined.')
  num_ps_replicas = config.num_ps_replicas if config else 0
  input_layer_partitioner = input_layer_partitioner or (
      partitioned_variables.min_max_variable_partitioner(
          max_partitions=num_ps_replicas,
          min_slice_size=64 << 20))

  # Build DNN Logits.
  dnn_parent_scope = 'dnn'

  if not dnn_feature_columns:
    dnn_logits = None
  else:
    dnn_optimizer = optimizers.get_optimizer_instance(
        dnn_optimizer, learning_rate=_DNN_LEARNING_RATE)
    _check_no_sync_replicas_optimizer(dnn_optimizer)
    if not dnn_hidden_units:
      raise ValueError(
          'dnn_hidden_units must be defined when dnn_feature_columns is '
          'specified.')
    dnn_partitioner = (
        partitioned_variables.min_max_variable_partitioner(
            max_partitions=num_ps_replicas))
    with variable_scope.variable_scope(
        dnn_parent_scope,
        values=tuple(six.itervalues(features)),
        partitioner=dnn_partitioner):
      with variable_scope.variable_scope('input',
                                         partitioner=input_layer_partitioner):
        net = feature_column_lib.input_layer(
            features=features,
            feature_columns=dnn_feature_columns)

      for layer_id, num_hidden_units in enumerate(dnn_hidden_units):
        with variable_scope.variable_scope(
            'hiddenlayer_%d' % layer_id,
            values=(net,)) as dnn_hidden_layer_scope:
          net = core_layers.dense(
              net,
              units=num_hidden_units,
              activation=dnn_activation_fn,
              kernel_initializer=init_ops.glorot_uniform_initializer(),
              name=dnn_hidden_layer_scope)
          if dnn_dropout is not None and mode == model_fn.ModeKeys.TRAIN:
            net = core_layers.dropout(net, rate=dnn_dropout, training=True)
        _add_layer_summary(net, dnn_hidden_layer_scope.name)

      with variable_scope.variable_scope(
          'logits',
          values=(net,)) as dnn_logits_scope:
        dnn_logits = core_layers.dense(
            net,
            units=head.logits_dimension,
            activation=None,
            kernel_initializer=init_ops.glorot_uniform_initializer(),
            name=dnn_logits_scope)
      _add_layer_summary(dnn_logits, dnn_logits_scope.name)

  linear_parent_scope = 'linear'

  if not linear_feature_columns:
    linear_logits = None
  else:
    linear_optimizer = optimizers.get_optimizer_instance(
        linear_optimizer,
        learning_rate=_linear_learning_rate(len(linear_feature_columns)))
    _check_no_sync_replicas_optimizer(linear_optimizer)
    with variable_scope.variable_scope(
        linear_parent_scope,
        values=tuple(six.itervalues(features)),
        partitioner=input_layer_partitioner) as scope:
      linear_logits = feature_column_lib.linear_model(
          features=features,
          feature_columns=linear_feature_columns,
          units=head.logits_dimension)
      _add_layer_summary(linear_logits, scope.name)

  # Combine logits and build full model.
  if dnn_logits is not None and linear_logits is not None:
    logits = dnn_logits + linear_logits
  elif dnn_logits is not None:
    logits = dnn_logits
  else:
    logits = linear_logits

  def _train_op_fn(loss):
    """Returns the op to optimize the loss."""
    train_ops = []
    global_step = training_util.get_global_step()
    if dnn_logits is not None:
      train_ops.append(
          dnn_optimizer.minimize(
              loss,
              var_list=ops.get_collection(
                  ops.GraphKeys.TRAINABLE_VARIABLES,
                  scope=dnn_parent_scope)))
    if linear_logits is not None:
      train_ops.append(
          linear_optimizer.minimize(
              loss,
              var_list=ops.get_collection(
                  ops.GraphKeys.TRAINABLE_VARIABLES,
                  scope=linear_parent_scope)))

    train_op = control_flow_ops.group(*train_ops)
    with ops.control_dependencies([train_op]):
      with ops.colocate_with(global_step):
        return state_ops.assign_add(global_step, 1)

  return head.create_estimator_spec(
      features=features,
      mode=mode,
      labels=labels,
      train_op_fn=_train_op_fn,
      logits=logits)
示例#15
0
def _linear_model_fn(features, labels, mode, params, config=None):
  """A model_fn for linear models that use a gradient-based optimizer.

  Args:
    features: `Tensor` or dict of `Tensor` (depends on data passed to `fit`).
    labels: `Tensor` of shape [batch_size, 1] or [batch_size] labels of
      dtype `int32` or `int64` in the range `[0, n_classes)`.
    mode: Defines whether this is training, evaluation or prediction.
      See `ModeKeys`.
    params: A dict of hyperparameters.
      The following hyperparameters are expected:
      * head: A `Head` instance.
      * feature_columns: An iterable containing all the feature columns used by
          the model.
      * optimizer: string, `Optimizer` object, or callable that defines the
          optimizer to use for training. If `None`, will use a FTRL optimizer.
      * gradient_clip_norm: A float > 0. If provided, gradients are
          clipped to their global norm with this clipping ratio.
      * joint_weights: If True, the weights for all columns will be stored in a
        single (possibly partitioned) variable. It's more efficient, but it's
        incompatible with SDCAOptimizer, and requires all feature columns are
        sparse and use the 'sum' combiner.
    config: `RunConfig` object to configure the runtime settings.

  Returns:
    A `ModelFnOps` instance.

  Raises:
    ValueError: If mode is not any of the `ModeKeys`.
  """
  head = params["head"]
  feature_columns = params["feature_columns"]
  optimizer = params.get("optimizer") or _get_default_optimizer(feature_columns)
  gradient_clip_norm = params.get("gradient_clip_norm", None)
  num_ps_replicas = config.num_ps_replicas if config else 0
  joint_weights = params.get("joint_weights", False)

  if not isinstance(features, dict):
    features = {"": features}

  parent_scope = "linear"
  partitioner = partitioned_variables.min_max_variable_partitioner(
      max_partitions=num_ps_replicas,
      min_slice_size=64 << 20)

  with variable_scope.variable_scope(
      parent_scope,
      values=tuple(six.itervalues(features)),
      partitioner=partitioner) as scope:
    if all([isinstance(fc, feature_column._FeatureColumn)  # pylint: disable=protected-access
            for fc in feature_columns]):
      if joint_weights:
        layer_fn = layers.joint_weighted_sum_from_feature_columns
      else:
        layer_fn = layers.weighted_sum_from_feature_columns
      logits, _, _ = layer_fn(
          columns_to_tensors=features,
          feature_columns=feature_columns,
          num_outputs=head.logits_dimension,
          weight_collections=[parent_scope],
          scope=scope)
    else:
      logits = fc_core.linear_model(
          features=features,
          feature_columns=feature_columns,
          units=head.logits_dimension,
          weight_collections=[parent_scope])

    def _train_op_fn(loss):
      global_step = training_util.get_global_step()
      my_vars = ops.get_collection(parent_scope)
      grads = gradients.gradients(loss, my_vars)
      if gradient_clip_norm:
        grads, _ = clip_ops.clip_by_global_norm(grads, gradient_clip_norm)
      return (_get_optimizer(optimizer).apply_gradients(
          zip(grads, my_vars), global_step=global_step))

    return head.create_model_fn_ops(
        features=features,
        mode=mode,
        labels=labels,
        train_op_fn=_train_op_fn,
        logits=logits)
def _dnn_linear_combined_model_fn(features, labels, mode, params, config=None):
  """Deep Neural Net and Linear combined model_fn.

  Args:
    features: `Tensor` or dict of `Tensor` (depends on data passed to `fit`).
    labels: `Tensor` of shape [batch_size, 1] or [batch_size] labels of dtype
      `int32` or `int64` in the range `[0, n_classes)`.
    mode: Defines whether this is training, evaluation or prediction.
      See `ModeKeys`.
    params: A dict of hyperparameters.
      The following hyperparameters are expected:
      * head: A `Head` instance.
      * linear_feature_columns: An iterable containing all the feature columns
          used by the Linear model.
      * linear_optimizer: string, `Optimizer` object, or callable that defines
          the optimizer to use for training the Linear model. Defaults to the
          Ftrl optimizer.
      * joint_linear_weights: If True a single (possibly partitioned) variable
          will be used to store the linear model weights. It's faster, but
          requires all columns are sparse and have the 'sum' combiner.
      * dnn_feature_columns: An iterable containing all the feature columns used
          by the DNN model.
      * dnn_optimizer: string, `Optimizer` object, or callable that defines the
          optimizer to use for training the DNN model. Defaults to the Adagrad
          optimizer.
      * dnn_hidden_units: List of hidden units per DNN layer.
      * dnn_activation_fn: Activation function applied to each DNN layer. If
          `None`, will use `tf.nn.relu`.
      * dnn_dropout: When not `None`, the probability we will drop out a given
          DNN coordinate.
      * gradient_clip_norm: A float > 0. If provided, gradients are
          clipped to their global norm with this clipping ratio.
      * embedding_lr_multipliers: Optional. A dictionary from
          `EmbeddingColumn` to a `float` multiplier. Multiplier will be used to
          multiply with learning rate for the embedding variables.
      * input_layer_partitioner: Optional. Partitioner for input layer.
    config: `RunConfig` object to configure the runtime settings.

  Returns:
    `ModelFnOps`

  Raises:
    ValueError: If both `linear_feature_columns` and `dnn_features_columns`
      are empty at the same time, or `input_layer_partitioner` is missing.
  """
  head = params["head"]
  linear_feature_columns = params.get("linear_feature_columns")
  linear_optimizer = params.get("linear_optimizer") or "Ftrl"
  joint_linear_weights = params.get("joint_linear_weights")
  dnn_feature_columns = params.get("dnn_feature_columns")
  dnn_optimizer = params.get("dnn_optimizer") or "Adagrad"
  dnn_hidden_units = params.get("dnn_hidden_units")
  dnn_activation_fn = params.get("dnn_activation_fn") or nn.relu
  dnn_dropout = params.get("dnn_dropout")
  gradient_clip_norm = params.get("gradient_clip_norm")
  num_ps_replicas = config.num_ps_replicas if config else 0
  input_layer_partitioner = params.get("input_layer_partitioner") or (
      partitioned_variables.min_max_variable_partitioner(
          max_partitions=num_ps_replicas,
          min_slice_size=64 << 20))
  embedding_lr_multipliers = params.get("embedding_lr_multipliers", {})
  fix_global_step_increment_bug = params.get(
      "fix_global_step_increment_bug", True)

  if not linear_feature_columns and not dnn_feature_columns:
    raise ValueError(
        "Either linear_feature_columns or dnn_feature_columns must be defined.")

  features = _get_feature_dict(features)

  linear_optimizer = _get_optimizer(linear_optimizer)
  _check_no_sync_replicas_optimizer(linear_optimizer)
  dnn_optimizer = _get_optimizer(dnn_optimizer)
  _check_no_sync_replicas_optimizer(dnn_optimizer)

  # Build DNN Logits.
  dnn_parent_scope = "dnn"

  if not dnn_feature_columns:
    dnn_logits = None
  else:
    if not dnn_hidden_units:
      raise ValueError(
          "dnn_hidden_units must be defined when dnn_feature_columns is "
          "specified.")
    dnn_partitioner = (
        partitioned_variables.min_max_variable_partitioner(
            max_partitions=num_ps_replicas))
    with variable_scope.variable_scope(
        dnn_parent_scope,
        values=tuple(six.itervalues(features)),
        partitioner=dnn_partitioner):
      with variable_scope.variable_scope(
          "input_from_feature_columns",
          values=tuple(six.itervalues(features)),
          partitioner=input_layer_partitioner) as dnn_input_scope:
        if all([
            isinstance(fc, feature_column_lib._FeatureColumn)  # pylint: disable=protected-access
            for fc in dnn_feature_columns
        ]):
          net = layers.input_from_feature_columns(
              columns_to_tensors=features,
              feature_columns=dnn_feature_columns,
              weight_collections=[dnn_parent_scope],
              scope=dnn_input_scope)
        else:
          net = fc_core.input_layer(
              features=features,
              feature_columns=dnn_feature_columns,
              weight_collections=[dnn_parent_scope])

      for layer_id, num_hidden_units in enumerate(dnn_hidden_units):
        with variable_scope.variable_scope(
            "hiddenlayer_%d" % layer_id,
            values=(net,)) as dnn_hidden_layer_scope:
          net = layers.fully_connected(
              net,
              num_hidden_units,
              activation_fn=dnn_activation_fn,
              variables_collections=[dnn_parent_scope],
              scope=dnn_hidden_layer_scope)
          if dnn_dropout is not None and mode == model_fn.ModeKeys.TRAIN:
            net = layers.dropout(
                net,
                keep_prob=(1.0 - dnn_dropout))
        # TODO(b/31209633): Consider adding summary before dropout.
        _add_layer_summary(net, dnn_hidden_layer_scope.name)

      with variable_scope.variable_scope(
          "logits",
          values=(net,)) as dnn_logits_scope:
        dnn_logits = layers.fully_connected(
            net,
            head.logits_dimension,
            activation_fn=None,
            variables_collections=[dnn_parent_scope],
            scope=dnn_logits_scope)
      _add_layer_summary(dnn_logits, dnn_logits_scope.name)

  # Build Linear logits.
  linear_parent_scope = "linear"

  if not linear_feature_columns:
    linear_logits = None
  else:
    linear_partitioner = partitioned_variables.min_max_variable_partitioner(
        max_partitions=num_ps_replicas,
        min_slice_size=64 << 20)
    with variable_scope.variable_scope(
        linear_parent_scope,
        values=tuple(six.itervalues(features)),
        partitioner=linear_partitioner) as scope:
      if all([isinstance(fc, feature_column_lib._FeatureColumn)  # pylint: disable=protected-access
              for fc in linear_feature_columns]):
        if joint_linear_weights:
          linear_logits, _, _ = layers.joint_weighted_sum_from_feature_columns(
              columns_to_tensors=features,
              feature_columns=linear_feature_columns,
              num_outputs=head.logits_dimension,
              weight_collections=[linear_parent_scope],
              scope=scope)
        else:
          linear_logits, _, _ = layers.weighted_sum_from_feature_columns(
              columns_to_tensors=features,
              feature_columns=linear_feature_columns,
              num_outputs=head.logits_dimension,
              weight_collections=[linear_parent_scope],
              scope=scope)
      else:
        linear_logits = fc_core.linear_model(
            features=features,
            feature_columns=linear_feature_columns,
            units=head.logits_dimension,
            weight_collections=[linear_parent_scope])

      _add_layer_summary(linear_logits, scope.name)

  # Combine logits and build full model.
  if dnn_logits is not None and linear_logits is not None:
    logits = dnn_logits + linear_logits
  elif dnn_logits is not None:
    logits = dnn_logits
  else:
    logits = linear_logits

  def _make_training_op(training_loss):
    """Training op for the DNN linear combined model."""
    train_ops = []
    global_step = training_util.get_global_step()
    if dnn_logits is not None:
      train_ops.append(
          optimizers.optimize_loss(
              loss=training_loss,
              global_step=global_step,
              learning_rate=_DNN_LEARNING_RATE,
              optimizer=dnn_optimizer,
              gradient_multipliers=_extract_embedding_lr_multipliers(  # pylint: disable=protected-access
                  embedding_lr_multipliers, dnn_parent_scope,
                  dnn_input_scope.name),
              clip_gradients=gradient_clip_norm,
              variables=ops.get_collection(dnn_parent_scope),
              name=dnn_parent_scope,
              # Empty summaries, because head already logs "loss" summary.
              summaries=[],
              increment_global_step=not fix_global_step_increment_bug))
    if linear_logits is not None:
      train_ops.append(
          optimizers.optimize_loss(
              loss=training_loss,
              global_step=global_step,
              learning_rate=_linear_learning_rate(len(linear_feature_columns)),
              optimizer=linear_optimizer,
              clip_gradients=gradient_clip_norm,
              variables=ops.get_collection(linear_parent_scope),
              name=linear_parent_scope,
              # Empty summaries, because head already logs "loss" summary.
              summaries=[],
              increment_global_step=not fix_global_step_increment_bug))

    train_op = control_flow_ops.group(*train_ops)
    if fix_global_step_increment_bug:
      with ops.control_dependencies([train_op]):
        with ops.colocate_with(global_step):
          return state_ops.assign_add(global_step, 1).op
    return train_op

  return head.create_model_fn_ops(
      features=features,
      mode=mode,
      labels=labels,
      train_op_fn=_make_training_op,
      logits=logits)
示例#17
0
def linear_classifier_model_fn(features, labels, mode, params, config=None):
    """A model_fn for linear models that use a gradient-based optimizer.
    Args:
      features: `Tensor` or dict of `Tensor` (depends on data passed to `fit`).
      labels: `Tensor` of shape [batch_size, 1] or [batch_size] labels of
        dtype `int32` or `int64` in the range `[0, n_classes)`.
      mode: Defines whether this is training, evaluation or prediction.
        See `ModeKeys`.
      params: A dict of hyperparameters.
        The following hyperparameters are expected:
        * head: A `Head` instance.
        * feature_columns: An iterable containing all the feature columns
        used by
            the model.
        * optimizer: string, `Optimizer` object, or callable that defines the
            optimizer to use for training. If `None`, will use a FTRL
            optimizer.
        * gradient_clip_norm: A float > 0. If provided, gradients are
            clipped to their global norm with this clipping ratio.
        * joint_weights: If True, the weights for all columns will be stored
        in a
          single (possibly partitioned) variable. It's more efficient, but it's
          incompatible with SDCAOptimizer, and requires all feature columns are
          sparse and use the 'sum' combiner.
      config: `RunConfig` object to configure the runtime settings.
    Returns:
      A `ModelFnOps` instance.
    Raises:
      ValueError: If mode is not any of the `ModeKeys`.
    """

    if params["num_classes"] > 2:
        head = head_lib.multi_class_head(
            params["num_classes"],
            weight_column_name=params["weight_column_name"],
            enable_centered_bias=params["enable_centered_bias"],
            label_keys=params["label_keys"],
            metric_class_ids=range(0, params["num_classes"]))
    else:
        head = head_lib.multi_class_head(
            params["num_classes"],
            weight_column_name=params["weight_column_name"],
            enable_centered_bias=params["enable_centered_bias"])

    feature_columns = [layers.real_valued_column(i) for i in features.keys()]

    optimizer = _get_default_optimizer(feature_columns)
    gradient_clip_norm = params.get("gradient_clip_norm", None)
    num_ps_replicas = config.num_ps_replicas if config else 0
    joint_weights = params.get("joint_weights", False)

    if not isinstance(features, dict):
        features = {"": features}

    parent_scope = "linear"

    partitioner = partitioned_variables.min_max_variable_partitioner(
        max_partitions=num_ps_replicas, min_slice_size=64 << 20)

    with variable_scope.variable_scope(parent_scope,
                                       values=tuple(six.itervalues(features)),
                                       partitioner=partitioner) as scope:
        if all([
                isinstance(fc, feature_column._FeatureColumn)
                for fc in feature_columns
        ]):
            if joint_weights:
                layer_fn = layers.joint_weighted_sum_from_feature_columns
            else:
                layer_fn = layers.weighted_sum_from_feature_columns
            logits, _, _ = layer_fn(columns_to_tensors=features,
                                    feature_columns=feature_columns,
                                    num_outputs=head.logits_dimension,
                                    weight_collections=[parent_scope],
                                    scope=scope)
        else:
            logits = fc_core.linear_model(features=features,
                                          feature_columns=feature_columns,
                                          units=head.logits_dimension,
                                          weight_collections=[parent_scope])

    def _train_op_fn(loss):
        global_step = contrib_variables.get_global_step()
        my_vars = ops.get_collection(parent_scope)
        grads = gradients.gradients(loss, my_vars)
        if gradient_clip_norm:
            grads, _ = clip_ops.clip_by_global_norm(grads, gradient_clip_norm)
        return (_get_optimizer(optimizer).apply_gradients(
            zip(grads, my_vars), global_step=global_step))

    return head.create_model_fn_ops(features=features,
                                    mode=mode,
                                    labels=labels,
                                    train_op_fn=_train_op_fn,
                                    logits=logits)
示例#18
0
def _dnn_linear_combined_model_fn(features, labels, mode, params, config=None):
  """Deep Neural Net and Linear combined model_fn.

  Args:
    features: `Tensor` or dict of `Tensor` (depends on data passed to `fit`).
    labels: `Tensor` of shape [batch_size, 1] or [batch_size] labels of dtype
      `int32` or `int64` in the range `[0, n_classes)`.
    mode: Defines whether this is training, evaluation or prediction.
      See `ModeKeys`.
    params: A dict of hyperparameters.
      The following hyperparameters are expected:
      * head: A `Head` instance.
      * linear_feature_columns: An iterable containing all the feature columns
          used by the Linear model.
      * linear_optimizer: string, `Optimizer` object, or callable that defines
          the optimizer to use for training the Linear model. Defaults to the
          Ftrl optimizer.
      * joint_linear_weights: If True a single (possibly partitioned) variable
          will be used to store the linear model weights. It's faster, but
          requires all columns are sparse and have the 'sum' combiner.
      * dnn_feature_columns: An iterable containing all the feature columns used
          by the DNN model.
      * dnn_optimizer: string, `Optimizer` object, or callable that defines the
          optimizer to use for training the DNN model. Defaults to the Adagrad
          optimizer.
      * dnn_hidden_units: List of hidden units per DNN layer.
      * dnn_activation_fn: Activation function applied to each DNN layer. If
          `None`, will use `tf.nn.relu`.
      * dnn_dropout: When not `None`, the probability we will drop out a given
          DNN coordinate.
      * gradient_clip_norm: A float > 0. If provided, gradients are
          clipped to their global norm with this clipping ratio.
      * embedding_lr_multipliers: Optional. A dictionary from
          `EmbeddingColumn` to a `float` multiplier. Multiplier will be used to
          multiply with learning rate for the embedding variables.
      * input_layer_partitioner: Optional. Partitioner for input layer.
    config: `RunConfig` object to configure the runtime settings.

  Returns:
    `ModelFnOps`

  Raises:
    ValueError: If both `linear_feature_columns` and `dnn_features_columns`
      are empty at the same time, or `input_layer_partitioner` is missing.
  """
  head = params["head"]
  linear_feature_columns = params.get("linear_feature_columns")
  linear_optimizer = params.get("linear_optimizer") or "Ftrl"
  joint_linear_weights = params.get("joint_linear_weights")
  dnn_feature_columns = params.get("dnn_feature_columns")
  dnn_optimizer = params.get("dnn_optimizer") or "Adagrad"
  dnn_hidden_units = params.get("dnn_hidden_units")
  dnn_activation_fn = params.get("dnn_activation_fn") or nn.relu
  dnn_dropout = params.get("dnn_dropout")
  gradient_clip_norm = params.get("gradient_clip_norm")
  num_ps_replicas = config.num_ps_replicas if config else 0
  input_layer_partitioner = params.get("input_layer_partitioner") or (
      partitioned_variables.min_max_variable_partitioner(
          max_partitions=num_ps_replicas,
          min_slice_size=64 << 20))
  embedding_lr_multipliers = params.get("embedding_lr_multipliers", {})
  fix_global_step_increment_bug = params.get(
      "fix_global_step_increment_bug", True)

  if not linear_feature_columns and not dnn_feature_columns:
    raise ValueError(
        "Either linear_feature_columns or dnn_feature_columns must be defined.")

  features = _get_feature_dict(features)

  linear_optimizer = _get_optimizer(linear_optimizer)
  _check_no_sync_replicas_optimizer(linear_optimizer)
  dnn_optimizer = _get_optimizer(dnn_optimizer)
  _check_no_sync_replicas_optimizer(dnn_optimizer)

  # Build DNN Logits.
  dnn_parent_scope = "dnn"

  if not dnn_feature_columns:
    dnn_logits = None
  else:
    if not dnn_hidden_units:
      raise ValueError(
          "dnn_hidden_units must be defined when dnn_feature_columns is "
          "specified.")
    dnn_partitioner = (
        partitioned_variables.min_max_variable_partitioner(
            max_partitions=num_ps_replicas))
    with variable_scope.variable_scope(
        dnn_parent_scope,
        values=tuple(six.itervalues(features)),
        partitioner=dnn_partitioner):
      with variable_scope.variable_scope(
          "input_from_feature_columns",
          values=tuple(six.itervalues(features)),
          partitioner=input_layer_partitioner) as dnn_input_scope:
        if all([
            isinstance(fc, feature_column_lib._FeatureColumn)  # pylint: disable=protected-access
            for fc in dnn_feature_columns
        ]):
          net = layers.input_from_feature_columns(
              columns_to_tensors=features,
              feature_columns=dnn_feature_columns,
              weight_collections=[dnn_parent_scope],
              scope=dnn_input_scope)
        else:
          net = fc_core.input_layer(
              features=features,
              feature_columns=dnn_feature_columns,
              weight_collections=[dnn_parent_scope])

      for layer_id, num_hidden_units in enumerate(dnn_hidden_units):
        with variable_scope.variable_scope(
            "hiddenlayer_%d" % layer_id,
            values=(net,)) as dnn_hidden_layer_scope:
          net = layers.fully_connected(
              net,
              num_hidden_units,
              activation_fn=dnn_activation_fn,
              variables_collections=[dnn_parent_scope],
              scope=dnn_hidden_layer_scope)
          if dnn_dropout is not None and mode == model_fn.ModeKeys.TRAIN:
            net = layers.dropout(
                net,
                keep_prob=(1.0 - dnn_dropout))
        # TODO(b/31209633): Consider adding summary before dropout.
        _add_layer_summary(net, dnn_hidden_layer_scope.name)

      with variable_scope.variable_scope(
          "logits",
          values=(net,)) as dnn_logits_scope:
        dnn_logits = layers.fully_connected(
            net,
            head.logits_dimension,
            activation_fn=None,
            variables_collections=[dnn_parent_scope],
            scope=dnn_logits_scope)
      _add_layer_summary(dnn_logits, dnn_logits_scope.name)

  # Build Linear logits.
  linear_parent_scope = "linear"

  if not linear_feature_columns:
    linear_logits = None
  else:
    linear_partitioner = partitioned_variables.min_max_variable_partitioner(
        max_partitions=num_ps_replicas,
        min_slice_size=64 << 20)
    with variable_scope.variable_scope(
        linear_parent_scope,
        values=tuple(six.itervalues(features)),
        partitioner=linear_partitioner) as scope:
      if all([isinstance(fc, feature_column_lib._FeatureColumn)  # pylint: disable=protected-access
              for fc in linear_feature_columns]):
        if joint_linear_weights:
          linear_logits, _, _ = layers.joint_weighted_sum_from_feature_columns(
              columns_to_tensors=features,
              feature_columns=linear_feature_columns,
              num_outputs=head.logits_dimension,
              weight_collections=[linear_parent_scope],
              scope=scope)
        else:
          linear_logits, _, _ = layers.weighted_sum_from_feature_columns(
              columns_to_tensors=features,
              feature_columns=linear_feature_columns,
              num_outputs=head.logits_dimension,
              weight_collections=[linear_parent_scope],
              scope=scope)
      else:
        linear_logits = fc_core.linear_model(
            features=features,
            feature_columns=linear_feature_columns,
            units=head.logits_dimension,
            weight_collections=[linear_parent_scope])

      _add_layer_summary(linear_logits, scope.name)

  # Combine logits and build full model.
  if dnn_logits is not None and linear_logits is not None:
    logits = dnn_logits + linear_logits
  elif dnn_logits is not None:
    logits = dnn_logits
  else:
    logits = linear_logits

  def _make_training_op(training_loss):
    """Training op for the DNN linear combined model."""
    train_ops = []
    global_step = training_util.get_global_step()
    if dnn_logits is not None:
      train_ops.append(
          optimizers.optimize_loss(
              loss=training_loss,
              global_step=global_step,
              learning_rate=_DNN_LEARNING_RATE,
              optimizer=dnn_optimizer,
              gradient_multipliers=_extract_embedding_lr_multipliers(  # pylint: disable=protected-access
                  embedding_lr_multipliers, dnn_parent_scope,
                  dnn_input_scope.name),
              clip_gradients=gradient_clip_norm,
              variables=ops.get_collection(dnn_parent_scope),
              name=dnn_parent_scope,
              # Empty summaries, because head already logs "loss" summary.
              summaries=[],
              increment_global_step=not fix_global_step_increment_bug))
    if linear_logits is not None:
      train_ops.append(
          optimizers.optimize_loss(
              loss=training_loss,
              global_step=global_step,
              learning_rate=_linear_learning_rate(len(linear_feature_columns)),
              optimizer=linear_optimizer,
              clip_gradients=gradient_clip_norm,
              variables=ops.get_collection(linear_parent_scope),
              name=linear_parent_scope,
              # Empty summaries, because head already logs "loss" summary.
              summaries=[],
              increment_global_step=not fix_global_step_increment_bug))

    train_op = control_flow_ops.group(*train_ops)
    if fix_global_step_increment_bug:
      with ops.control_dependencies([train_op]):
        with ops.colocate_with(global_step):
          return state_ops.assign_add(global_step, 1).op
    return train_op

  return head.create_model_fn_ops(
      features=features,
      mode=mode,
      labels=labels,
      train_op_fn=_make_training_op,
      logits=logits)