示例#1
0
def get(identifier):
  """Retrieves a Keras Optimizer instance.

  Arguments:
      identifier: Optimizer identifier, one of
          - String: name of an optimizer
          - Dictionary: configuration dictionary.
          - Keras Optimizer instance (it will be returned unchanged).
          - TensorFlow Optimizer instance
              (it will be wrapped as a Keras Optimizer).

  Returns:
      A Keras Optimizer instance.

  Raises:
      ValueError: If `identifier` cannot be interpreted.
  """
  if isinstance(identifier, (Optimizer, optimizer_v2.OptimizerV2)):
    return identifier
  # Wrap TF optimizer instances
  elif isinstance(identifier, tf_optimizer_module.Optimizer):
    opt = TFOptimizer(identifier)
    K.track_tf_optimizer(opt)
    return opt
  elif isinstance(identifier, dict):
    return deserialize(identifier)
  elif isinstance(identifier, six.string_types):
    config = {'class_name': str(identifier), 'config': {}}
    return deserialize(config)
  else:
    raise ValueError('Could not interpret optimizer identifier:', identifier)
示例#2
0
def get(identifier):
    """Retrieves a Keras Optimizer instance.

  Arguments:
      identifier: Optimizer identifier, one of
          - String: name of an optimizer
          - Dictionary: configuration dictionary. - Keras Optimizer instance (it
            will be returned unchanged). - TensorFlow Optimizer instance (it
            will be wrapped as a Keras Optimizer).

  Returns:
      A Keras Optimizer instance.

  Raises:
      ValueError: If `identifier` cannot be interpreted.
  """
    if isinstance(identifier, (Optimizer, optimizer_v2.OptimizerV2)):
        return identifier
    # Wrap TF optimizer instances
    elif isinstance(identifier, tf_optimizer_module.Optimizer):
        opt = TFOptimizer(identifier)
        K.track_tf_optimizer(opt)
        return opt
    elif isinstance(identifier, dict):
        return deserialize(identifier)
    elif isinstance(identifier, six.string_types):
        config = {'class_name': str(identifier), 'config': {}}
        return deserialize(config)
    else:
        raise ValueError('Could not interpret optimizer identifier:',
                         identifier)
示例#3
0
def clone_and_build_model(model,
                          input_tensors=None,
                          target_tensors=None,
                          custom_objects=None,
                          compile_clone=True,
                          in_place_reset=False,
                          optimizer_iterations=None):
    """Clone a `Model` and build/compile it with the same settings used before.

  This function can be be run in the same graph or in a separate graph from the
  model. When using a separate graph, `in_place_reset` must be `False`.

  Note that, currently, the clone produced from this function may not work with
  TPU DistributionStrategy. Try at your own risk.

  Args:
    model: `tf.keras.Model` object. Can be Functional, Sequential, or
      sub-classed.
    input_tensors: Optional list of input tensors to build the model upon. If
      not provided, placeholders will be created.
    target_tensors: Optional list of target tensors for compiling the model. If
      not provided, placeholders will be created.
    custom_objects: Optional dictionary mapping string names to custom classes
      or functions.
    compile_clone: Boolean, whether to compile model clone (default `True`).
    in_place_reset: Boolean, whether to reset the model in place. Only used if
      the model is not a graph network. If the model is a subclassed model, then
      this argument must be set to `True` (default `False`). To restore the
      original model, use the function
      `in_place_subclassed_model_state_restoration(model)`.
    optimizer_iterations: An iterations variable that will be incremented by the
      optimizer if the clone is compiled. This argument is used when a Keras
      model is cloned into an Estimator model function, because Estimators
      create their own global step variable.

  Returns:
    Clone of the model.

  Raises:
    ValueError: Cloning fails in the following cases
      - cloning a subclassed model with `in_place_reset` set to False.
      - compiling the clone when the original model has not been compiled.
  """
    # Grab optimizer now, as we reset-in-place for subclassed models, but
    # want to maintain access to the original optimizer.
    orig_optimizer = model.optimizer
    if compile_clone and not orig_optimizer:
        raise ValueError(
            'Error when cloning model: compile_clone was set to True, but the '
            'original model has not been compiled.')

    if model._is_graph_network or isinstance(model, Sequential):
        if custom_objects:
            with CustomObjectScope(custom_objects):
                clone = clone_model(model, input_tensors=input_tensors)
        else:
            clone = clone_model(model, input_tensors=input_tensors)

        if all([
                isinstance(clone, Sequential), not clone._is_graph_network,
                getattr(model, '_build_input_shape', None) is not None
        ]):
            # Set model inputs to build the model and add input/output properties.
            # TODO(kathywu): Add multiple placeholders to handle edge case where
            # sequential model has multiple inputs.
            clone._set_inputs(
                K.placeholder(model._build_input_shape,
                              dtype=model.inputs[0].dtype))
    else:
        if not in_place_reset:
            raise ValueError(
                'Model is not a graph network (usually means that it is a subclassed '
                'model). The model cannot be cloned, but there is a workaround where '
                'the model is reset in-place. To use this, please set the argument '
                '`in_place_reset` to `True`. This will reset the attributes in the '
                'original model. To restore the attributes, call '
                '`in_place_subclassed_model_state_restoration(model)`.')
        clone = model
        _in_place_subclassed_model_reset(clone)
        if input_tensors is not None:
            if isinstance(input_tensors,
                          (list, tuple)) and len(input_tensors) == 1:
                input_tensors = input_tensors[0]
            clone._set_inputs(input_tensors)

    if compile_clone:
        if isinstance(orig_optimizer, optimizers.TFOptimizer):
            optimizer = optimizers.TFOptimizer(orig_optimizer.optimizer,
                                               optimizer_iterations)
            K.track_tf_optimizer(optimizer)
        else:
            optimizer_config = orig_optimizer.get_config()
            optimizer = orig_optimizer.__class__.from_config(optimizer_config)
            if optimizer_iterations is not None:
                optimizer.iterations = optimizer_iterations

        clone.compile(optimizer,
                      model.loss,
                      metrics=metrics_module.clone_metrics(
                          model._compile_metrics),
                      loss_weights=model.loss_weights,
                      sample_weight_mode=model.sample_weight_mode,
                      weighted_metrics=metrics_module.clone_metrics(
                          model._compile_weighted_metrics),
                      target_tensors=target_tensors)

    return clone
示例#4
0
def clone_and_build_model(
    model, input_tensors=None, target_tensors=None, custom_objects=None,
    compile_clone=True, in_place_reset=False, optimizer_iterations=None):
  """Clone a `Model` and build/compile it with the same settings used before.

  This function can be be run in the same graph or in a separate graph from the
  model. When using a separate graph, `in_place_reset` must be `False`.

  Note that, currently, the clone produced from this function may not work with
  TPU DistributionStrategy. Try at your own risk.

  Args:
    model: `tf.keras.Model` object. Can be Functional, Sequential, or
      sub-classed.
    input_tensors: Optional list of input tensors to build the model upon. If
      not provided, placeholders will be created.
    target_tensors: Optional list of target tensors for compiling the model. If
      not provided, placeholders will be created.
    custom_objects: Optional dictionary mapping string names to custom classes
      or functions.
    compile_clone: Boolean, whether to compile model clone (default `True`).
    in_place_reset: Boolean, whether to reset the model in place. Only used if
      the model is a subclassed model. In the case of a subclassed model,
      this argument must be set to `True` (default `False`). To restore the
      original model, use the function
      `in_place_subclassed_model_state_restoration(model)`.
    optimizer_iterations: An iterations variable that will be incremented by the
      optimizer if the clone is compiled. This argument is used when a Keras
      model is cloned into an Estimator model function, because Estimators
      create their own global step variable.

  Returns:
    Clone of the model.

  Raises:
    ValueError: Cloning fails in the following cases
      - cloning a subclassed model with `in_place_reset` set to False.
      - compiling the clone when the original model has not been compiled.
  """
  # Grab optimizer now, as we reset-in-place for subclassed models, but
  # want to maintain access to the original optimizer.
  orig_optimizer = model.optimizer
  if compile_clone and not orig_optimizer:
    raise ValueError(
        'Error when cloning model: compile_clone was set to True, but the '
        'original model has not been compiled.')

  if model._is_graph_network or isinstance(model, Sequential):
    if custom_objects:
      with CustomObjectScope(custom_objects):
        clone = clone_model(model, input_tensors=input_tensors)
    else:
      clone = clone_model(model, input_tensors=input_tensors)

    if all([isinstance(clone, Sequential),
            not clone._is_graph_network,
            getattr(model, '_build_input_shape', None) is not None]):
      # Set model inputs to build the model and add input/output properties.
      # TODO(kathywu): Add multiple placeholders to handle edge case where
      # sequential model has multiple inputs.
      clone._set_inputs(
          K.placeholder(model._build_input_shape, dtype=model.inputs[0].dtype))
  else:
    if not in_place_reset:
      raise ValueError(
          'This model is a subclassed model. '
          'Such a model cannot be cloned, but there is a workaround where '
          'the model is reset in-place. To use this, please set the argument '
          '`in_place_reset` to `True`. This will reset the attributes in the '
          'original model. To restore the attributes, call '
          '`in_place_subclassed_model_state_restoration(model)`.')
    clone = model
    _in_place_subclassed_model_reset(clone)
    if input_tensors is not None:
      if isinstance(input_tensors, (list, tuple)) and len(input_tensors) == 1:
        input_tensors = input_tensors[0]
      clone._set_inputs(input_tensors)

  if compile_clone:
    if isinstance(orig_optimizer, optimizers.TFOptimizer):
      optimizer = optimizers.TFOptimizer(
          orig_optimizer.optimizer, optimizer_iterations)
      K.track_tf_optimizer(optimizer)
    else:
      optimizer_config = orig_optimizer.get_config()
      optimizer = orig_optimizer.__class__.from_config(optimizer_config)
      if optimizer_iterations is not None:
        optimizer.iterations = optimizer_iterations

    clone.compile(
        optimizer,
        model.loss,
        metrics=metrics_module.clone_metrics(model._compile_metrics),
        loss_weights=model.loss_weights,
        sample_weight_mode=model.sample_weight_mode,
        weighted_metrics=metrics_module.clone_metrics(
            model._compile_weighted_metrics),
        target_tensors=target_tensors)

  return clone
示例#5
0
def clone_and_build_model(model,
                          input_tensors=None,
                          target_tensors=None,
                          custom_objects=None,
                          compile_clone=True,
                          in_place_reset=False,
                          optimizer_iterations=None,
                          optimizer_config=None):
    """Clone a `Model` and build/compile it with the same settings used before.

  This function can be run in the same graph or in a separate graph from the
  model. When using a separate graph, `in_place_reset` must be `False`.

  Note that, currently, the clone produced from this function may not work with
  TPU DistributionStrategy. Try at your own risk.

  Args:
    model: `tf.keras.Model` object. Can be Functional, Sequential, or
      sub-classed.
    input_tensors: Optional list or dictionary of input tensors to build the
      model upon. If not provided, placeholders will be created.
    target_tensors: Optional list of target tensors for compiling the model. If
      not provided, placeholders will be created.
    custom_objects: Optional dictionary mapping string names to custom classes
      or functions.
    compile_clone: Boolean, whether to compile model clone (default `True`).
    in_place_reset: Boolean, whether to reset the model in place. Only used if
      the model is a subclassed model. In the case of a subclassed model,
      this argument must be set to `True` (default `False`). To restore the
      original model, use the function
      `in_place_subclassed_model_state_restoration(model)`.
    optimizer_iterations: An iterations variable that will be incremented by the
      optimizer if the clone is compiled. This argument is used when a Keras
      model is cloned into an Estimator model function, because Estimators
      create their own global step variable.
    optimizer_config: Optimizer config dictionary or list of dictionary
      returned from `get_config()`. This argument should be defined if
      `clone_and_build_model` is called in a different graph or session from
      the original model, and the optimizer is an instance of `OptimizerV2`.

  Returns:
    Clone of the model.

  Raises:
    ValueError: Cloning fails in the following cases
      - cloning a subclassed model with `in_place_reset` set to False.
      - compiling the clone when the original model has not been compiled.
  """
    # Grab optimizer now, as we reset-in-place for subclassed models, but
    # want to maintain access to the original optimizer.
    orig_optimizer = model.optimizer
    if compile_clone and not orig_optimizer:
        raise ValueError(
            'Error when cloning model: compile_clone was set to True, but the '
            'original model has not been compiled.')

    if compile_clone:
        compile_args = model._get_compile_args()  # pylint: disable=protected-access
        # Allows this method to be robust to switching graph and eager classes.
        model._get_compile_args = lambda: compile_args

    with CustomObjectScope(custom_objects or {}):
        if model._is_graph_network:
            clone = clone_model(model, input_tensors=input_tensors)
        elif isinstance(model, Sequential):
            clone = clone_model(model, input_tensors=input_tensors)
            if (not clone._is_graph_network
                    and model._build_input_shape is not None):
                if ops.executing_eagerly_outside_functions():
                    clone.build(model._build_input_shape)
                else:
                    clone._set_inputs(
                        backend.placeholder(model._build_input_shape,
                                            dtype=model.inputs[0].dtype))
        else:
            try:
                # Prefer cloning the model if serial/deserial logic is implemented for
                # subclassed model.
                clone = model.__class__.from_config(model.get_config())
            except NotImplementedError:
                logging.warning(
                    'This model is a subclassed model. Please implement '
                    '`get_config` and `from_config` to better support '
                    'cloning the model.')
                if not in_place_reset:
                    raise ValueError(
                        'This model is a subclassed model. '
                        'Such a model cannot be cloned, but there is a workaround where '
                        'the model is reset in-place. To use this, please set the '
                        'argument `in_place_reset` to `True`. This will reset the '
                        'attributes in the original model. To restore the attributes, '
                        'call `in_place_subclassed_model_state_restoration(model)`.'
                    )
                clone = model
                _in_place_subclassed_model_reset(clone)
            if input_tensors is not None:
                if isinstance(input_tensors,
                              (list, tuple)) and len(input_tensors) == 1:
                    input_tensors = input_tensors[0]
                clone._set_inputs(input_tensors)

    if compile_clone:
        if isinstance(orig_optimizer, optimizer_v1.TFOptimizer):
            optimizer = optimizer_v1.TFOptimizer(orig_optimizer.optimizer,
                                                 optimizer_iterations)
            backend.track_tf_optimizer(optimizer)
        else:
            if not isinstance(orig_optimizer, (tuple, list)):
                orig_optimizer = [orig_optimizer]
            if optimizer_config is None:
                optimizer = [
                    opt.__class__.from_config(opt.get_config())
                    for opt in orig_optimizer
                ]
            elif isinstance(optimizer_config, dict):
                optimizer = [
                    orig_optimizer[0].__class__.from_config(optimizer_config)
                ]
            else:
                # optimizer config is list of dict, same order as orig_optimizer.
                optimizer = [
                    opt.__class__.from_config(opt_config)
                    for (opt,
                         opt_config) in zip(orig_optimizer, optimizer_config)
                ]
            if optimizer_iterations is not None:
                for opt in optimizer:
                    opt.iterations = optimizer_iterations

            if len(optimizer) == 1:
                optimizer = optimizer[0]

        compile_args['optimizer'] = optimizer
        if target_tensors is not None:
            compile_args['target_tensors'] = target_tensors
        # Ensure Metric objects in new model are separate from existing model.
        compile_args['metrics'] = metrics_module.clone_metrics(
            compile_args['metrics'])
        compile_args['weighted_metrics'] = metrics_module.clone_metrics(
            compile_args['weighted_metrics'])
        clone.compile(**compile_args)

    return clone
示例#6
0
def clone_and_build_model(
    model, input_tensors=None, target_tensors=None, custom_objects=None,
    compile_clone=True, in_place_reset=False, optimizer_iterations=None):
  """Clone a `Model` and build/compile it with the same settings used before.

  This function can be be run in the same graph or in a separate graph from the
  model. When using a separate graph, `in_place_reset` must be `False`.

  Args:
    model: `tf.keras.Model` object. Can be Functional, Sequential, or
      sub-classed.
    input_tensors: Optional list of input tensors to build the model upon. If
      not provided, placeholders will be created.
    target_tensors: Optional list of target tensors for compiling the model. If
      not provided, placeholders will be created.
    custom_objects: Optional dictionary mapping string names to custom classes
      or functions.
    compile_clone: Boolean, whether to compile model clone (default `True`).
    in_place_reset: Boolean, whether to reset the model in place. Only used if
      the model is not a graph network. If the model is a subclassed model, then
      this argument must be set to `True` (default `False`). To restore the
      original model, use the function
      `in_place_subclassed_model_state_restoration(model)`.
    optimizer_iterations: An iterations variable that will be incremented by the
      optimizer if the clone is compiled. This argument is used when a Keras
      model is cloned into an Estimator model function, because Estimators
      create their own global step variable.

  Returns:
    Clone of the model.

  Raises:
    ValueError: if trying to clone a subclassed model, and `in_place_reset` is
      set to False.
  """
  if model._is_graph_network:
    if custom_objects:
      with CustomObjectScope(custom_objects):
        clone = clone_model(model, input_tensors=input_tensors)
    else:
      clone = clone_model(model, input_tensors=input_tensors)
  else:
    if not in_place_reset:
      raise ValueError(
          'Model is not a graph network (usually means that it is a subclassed '
          'model). The model cannot be cloned, but there is a workaround where '
          'the model is reset in-place. To use this, please set the argument '
          '`in_place_reset` to `True`. This will reset the attributes in the '
          'original model. To restore the attributes, call '
          '`in_place_subclassed_model_state_restoration(model)`.')
    clone = model
    _in_place_subclassed_model_reset(clone)
    if input_tensors is not None:
      if isinstance(input_tensors, (list, tuple)) and len(input_tensors) == 1:
        input_tensors = input_tensors[0]
      clone._set_inputs(input_tensors)

  # Compile/Build model
  if not compile_clone:
    if isinstance(clone, Sequential):
      clone.build()
  elif model.optimizer:
    if isinstance(model.optimizer, optimizers.TFOptimizer):
      optimizer = optimizers.TFOptimizer(
          model.optimizer.optimizer, optimizer_iterations)
      K.track_tf_optimizer(optimizer)
    else:
      optimizer_config = model.optimizer.get_config()
      optimizer = model.optimizer.__class__.from_config(optimizer_config)
      if optimizer_iterations is not None:
        optimizer.iterations = optimizer_iterations

    clone.compile(
        optimizer,
        model.loss,
        metrics=metrics_module.clone_metrics(model.metrics),
        loss_weights=model.loss_weights,
        sample_weight_mode=model.sample_weight_mode,
        weighted_metrics=metrics_module.clone_metrics(model.weighted_metrics),
        target_tensors=target_tensors)

  return clone