def evaluate(self, model, x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None, callbacks=None, **kwargs): model._validate_or_infer_batch_size(batch_size, steps, x) # Make sure that y, sample_weights, validation_split are not passed. training_utils.validate_dataset_input(x, y, sample_weight) return evaluate_generator( model, x, steps=steps, verbose=verbose, workers=0, callbacks=callbacks)
def fit(self, model, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0., validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None, validation_freq=1, **kwargs): model._validate_or_infer_batch_size(batch_size, steps_per_epoch, x) # Make sure that y, sample_weights, validation_split are not passed. training_utils.validate_dataset_input(x, y, sample_weight, validation_split) if (isinstance(x, (dataset_ops.DatasetV1, dataset_ops.DatasetV2)) and shuffle): training_utils.verify_dataset_shuffled(x) return fit_generator(model, x, steps_per_epoch=steps_per_epoch, epochs=epochs, verbose=verbose, callbacks=callbacks, validation_data=validation_data, validation_steps=validation_steps, validation_freq=validation_freq, class_weight=class_weight, workers=0, shuffle=shuffle, initial_epoch=initial_epoch, steps_name='steps_per_epoch')