def test_predicting_with_mock_longer_width(self):
     np.random.seed(1337)
     height, width = 4, 6
     inp = np.random.random((12, 8, 16, 3))
     with self.cached_session(use_gpu=True):
         layer = image_preprocessing.RandomCrop(height, width)
         actual_output = layer(inp, training=0)
         resized_inp = image_ops.resize_images_v2(inp, size=[4, 8])
         expected_output = resized_inp[:, :, 1:7, :]
         self.assertAllClose(expected_output, actual_output)
示例#2
0
 def test_training_with_mock(self):
   np.random.seed(1337)
   height, width = 3, 4
   height_offset = np.random.randint(low=0, high=3)
   width_offset = np.random.randint(low=0, high=5)
   mock_offset = [0, height_offset, width_offset, 0]
   with test.mock.patch.object(
       stateless_random_ops, 'stateless_random_uniform',
       return_value=mock_offset):
     with self.cached_session(use_gpu=True):
       layer = image_preprocessing.RandomCrop(height, width)
       inp = np.random.random((12, 5, 8, 3))
       actual_output = layer(inp, training=1)
       expected_output = inp[:, height_offset:(height_offset + height),
                             width_offset:(width_offset + width), :]
       self.assertAllClose(expected_output, actual_output)
 def test_training_with_mock(self):
     if test.is_built_with_rocm():
         # TODO(rocm):
         # re-enable this test once ROCm adds support for
         # the StatefulUniformFullInt Op (on the GPU)
         self.skipTest('Feature not supported on ROCm')
     np.random.seed(1337)
     height, width = 3, 4
     height_offset = np.random.randint(low=0, high=3)
     width_offset = np.random.randint(low=0, high=5)
     mock_offset = [0, height_offset, width_offset, 0]
     with test.mock.patch.object(stateless_random_ops,
                                 'stateless_random_uniform',
                                 return_value=mock_offset):
         with self.cached_session(use_gpu=True):
             layer = image_preprocessing.RandomCrop(height, width)
             inp = np.random.random((12, 5, 8, 3))
             actual_output = layer(inp, training=1)
             expected_output = inp[:,
                                   height_offset:(height_offset + height),
                                   width_offset:(width_offset + width), :]
             self.assertAllClose(expected_output, actual_output)
 def test_config_with_custom_name(self):
     layer = image_preprocessing.RandomCrop(5, 5, name='image_preproc')
     config = layer.get_config()
     layer_1 = image_preprocessing.RandomCrop.from_config(config)
     self.assertEqual(layer_1.name, layer.name)