示例#1
0
    def build_model(self):
        from tensorflow.python.keras.layers import Dense, Dot

        dim = self.sent1.get_shape().as_list()[-1]
        temp_W = tf.layers.dense(self.sent2, dim, name="dense")  # (B, L2, dim)
        temp_W = Dot(axes=[2, 2])([self.sent1, temp_W])  # (B, L1, L2)

        if self.sent1_mask is not None:
            s1_mask_exp = tf.expand_dims(self.sent1_mask, axis=2)  # (B, L1, 1)
            s2_mask_exp = tf.expand_dims(self.sent2_mask, axis=1)  # (B, 1, L2)
            temp_W1 = temp_W - (1 - s1_mask_exp) * 1e20
            temp_W2 = temp_W - (1 - s2_mask_exp) * 1e20
        else:
            temp_W1 = temp_W
            temp_W2 = temp_W

        W1 = tf.nn.softmax(temp_W1, axis=1)
        W2 = tf.nn.softmax(temp_W2, axis=2)

        M1 = Dot(axes=[2, 1])([W2, self.sent2])
        M2 = Dot(axes=[2, 1])([W1, self.sent1])

        s1_cat = tf.concat([M2 - self.sent2, M2 * self.sent2], axis=-1)
        s2_cat = tf.concat([M1 - self.sent1, M1 * self.sent1], axis=-1)

        S1 = tf.layers.dense(s1_cat,
                             dim,
                             activation=tf.nn.relu,
                             name="cat_dense")
        S2 = tf.layers.dense(s2_cat,
                             dim,
                             activation=tf.nn.relu,
                             name="cat_dense",
                             reuse=True)

        if self.is_training:
            S1 = dropout(S1, dropout_prob=0.1)
            S1 = dropout(S1, dropout_prob=0.1)

        if self.sent1_mask is not None:
            S2 = S2 * tf.expand_dims(self.sent1_mask, axis=2)
            S1 = S1 * tf.expand_dims(self.sent2_mask, axis=2)

        C1 = tf.reduce_max(S1, axis=1)
        C2 = tf.reduce_max(S2, axis=1)

        C_cat = tf.concat([C1, C2], axis=1)

        return gelu(tf.layers.dense(C_cat, dim))
示例#2
0
    def build_model(self, vocab_size: int, vector_dim: int):
        """
        Builds the Keras model.
        :param vocab_size: The number of distinct words.
        :param vector_dim: The vector dimension of each word.
        :return: the Keras GloVe model.
        """
        input_target = Input((1, ), name="central_word_id")
        input_context = Input((1, ), name="context_word_id")

        central_embedding = Embedding(vocab_size,
                                      vector_dim,
                                      input_length=1,
                                      name=CNTRL_EMB)(input_target)
        central_bias = Embedding(vocab_size, 1, input_length=1,
                                 name=CNTRL_BS)(input_target)

        context_embedding = Embedding(vocab_size,
                                      vector_dim,
                                      input_length=1,
                                      name=CTX_EMB)(input_context)
        context_bias = Embedding(vocab_size, 1, input_length=1,
                                 name=CTX_BS)(input_context)

        dot_product = Dot(axes=-1)([central_embedding, context_embedding])
        dot_product = Reshape((1, ))(dot_product)
        bias_target = Reshape((1, ))(central_bias)
        bias_context = Reshape((1, ))(context_bias)

        prediction = Add()([dot_product, bias_target, bias_context])

        model = Model(inputs=[input_target, input_context], outputs=prediction)
        model.compile(loss=self.custom_loss, optimizer=Adagrad(lr=self.lr))
        print(model.summary())
        return model
示例#3
0
文件: FM_2.py 项目: Jie-Yuan/CTRZOO
    def build_model(self, f_sizes):
        """
        :param f_size: sparse feature nunique
        :return:
        """
        dim_input = len(f_sizes)  # +1

        input_x = [Input(shape=(1, ))
                   for i in range(dim_input)]  # 多列 sparse feature
        biases = [
            self.get_embed(x, size, 1) for (x, size) in zip(input_x, f_sizes)
        ]

        factors = [
            self.get_embed(x, size) for (x, size) in zip(input_x, f_sizes)
        ]

        s = Add()(factors)
        diffs = [Subtract()([s, x]) for x in factors]
        dots = [Dot(axes=1)([d, x]) for d, x in zip(diffs, factors)]

        x = Concatenate()(biases + dots)
        x = BatchNormalization()(x)
        output = Dense(1,
                       activation='relu',
                       kernel_regularizer=l2(self.kernel_l2))(x)
        model = Model(inputs=input_x, outputs=[output])
        model.compile(optimizer=Adam(clipnorm=0.5),
                      loss='mean_squared_error')  # TODO: radam

        output_f = factors + biases
        model_features = Model(inputs=input_x, outputs=output_f)
        return model, model_features
 def build_trainable_graph(self, network):
     action_mask_input = Input(shape=(self.action_len, ), name='a_mask_inp')
     q_values = network.output
     q_values_taken_action = Dot(axes=-1,
                                 name='qs_a')([q_values, action_mask_input])
     trainable_network = Model(inputs=[network.input, action_mask_input],
                               outputs=q_values_taken_action)
     trainable_network.compile(optimizer=self.optimizer,
                               loss='mse',
                               metrics=['mae'])
     return trainable_network
示例#5
0
def tnet(inputs, num_features):
    bias = Constant(np.eye(num_features).flatten())
    reg = OrthogonalRegularizer(num_features)

    x = conv_bn(inputs, 32)
    x = conv_bn(x, 64)
    x = conv_bn(x, 512)
    x = GlobalMaxPooling1D()(x)
    x = dense_bn(x, 256)
    x = dense_bn(x, 128)
    x = Dense(num_features * num_features,
              kernel_initializer='zeros',
              bias_initializer=bias,
              activity_regularizer=reg)(x)
    feat_T = Reshape((num_features, num_features))(x)
    return Dot(axes=(2, 1))([inputs, feat_T])
示例#6
0
def build_model_1(f_size):
    dim_input = len(f_size)

    input_x = [Input(shape=(1, )) for i in range(dim_input)]
    biases = [get_embed(x, size, 1) for (x, size) in zip(input_x, f_size)]
    factors = [
        get_embed(x, size, k_latent) for (x, size) in zip(input_x, f_size)
    ]

    s = Add()(factors)
    diffs = [Subtract()([s, x]) for x in factors]
    dots = [Dot(axes=1)([d, x]) for d, x in zip(diffs, factors)]

    x = Concatenate()(biases + dots)
    x = BatchNormalization()(x)
    output = Dense(1, activation='relu', kernel_regularizer=l2(kernel_reg))(x)
    model = Model(inputs=input_x, outputs=[output])
    model.compile(optimizer=Adam(clipnorm=0.5), loss='mean_squared_error')
    output_f = factors + biases
    model_features = Model(inputs=input_x, outputs=output_f)
    return model, model_features
	def build(self):

		self.transformer_meth = transformer.EncoderModel(vocab_size=self.vocab_size, model_dim=self.hidden_dims,
		                                                 embed_dim=self.embed_dims, ffn_dim=self.lstm_dims,
		                                                 droput_rate=0.2, n_heads=2, max_len=self.meth_name_len,
		                                                 name='methT')

		self.transformer_apiseq = transformer.EncoderModel(vocab_size=self.vocab_size, model_dim=self.hidden_dims,
		                                                   embed_dim=self.embed_dims, ffn_dim=self.lstm_dims,
		                                                   droput_rate=0.2, n_heads=4, max_len=self.apiseq_len,
		                                                   name='apiseqT')

		self.transformer_desc = transformer.EncoderModel(vocab_size=self.vocab_size, model_dim=self.hidden_dims,
		                                                 embed_dim=self.embed_dims, ffn_dim=self.lstm_dims,
		                                                 droput_rate=0.2, n_heads=4, max_len=self.desc_len, name='descT')

		# self.transformer_ast = EncoderModel(vocab_size=self.vocab_size, model_dim=self.hidden_dims, embed_dim=self.embed_dims, ffn_dim=self.lstm_dims, droput_rate=0.2, n_heads=4, max_len=128)
		self.transformer_tokens = transformer.EncoderModel(vocab_size=self.vocab_size, model_dim=self.hidden_dims,
		                                                   embed_dim=self.embed_dims, ffn_dim=self.lstm_dims,
		                                                   droput_rate=0.2, n_heads=8, max_len=self.tokens_len,
		                                                   name='tokensT')
		# create path to store model Info

		# 1 -- CodeNN
		meth_name = Input(shape=(self.meth_name_len,), dtype='int32', name='meth_name')
		apiseq = Input(shape=(self.apiseq_len,), dtype='int32', name='apiseq')
		tokens3 = Input(shape=(self.tokens_len,), dtype='int32', name='tokens3')

		# method name
		# embedding layer

		meth_name_out = self.transformer_meth(meth_name)
		# max pooling
		maxpool = Lambda(lambda x: k.max(x, axis=1, keepdims=False), output_shape=lambda x: (x[0], x[2]),
		                 name='maxpooling_methodname')
		method_name_pool = maxpool(meth_name_out)
		activation = Activation('tanh', name='active_method_name')
		method_name_repr = activation(method_name_pool)

		# apiseq
		# embedding layer

		apiseq_out = self.transformer_apiseq(apiseq)
		# max pooling
		maxpool = Lambda(lambda x: k.max(x, axis=1, keepdims=False), output_shape=lambda x: (x[0], x[2]),
		                 name='maxpooling_apiseq')
		apiseq_pool = maxpool(apiseq_out)
		activation = Activation('tanh', name='active_apiseq')
		apiseq_repr = activation(apiseq_pool)

		# tokens
		# embedding layer

		tokens_out = self.transformer_tokens(tokens3)
		# max pooling
		maxpool = Lambda(lambda x: k.max(x, axis=1, keepdims=False), output_shape=lambda x: (x[0], x[2]),
		                 name='maxpooling_tokens')
		tokens_pool = maxpool(tokens_out)
		activation = Activation('tanh', name='active_tokens')
		tokens_repr = activation(tokens_pool)

		# fusion method_name, apiseq, tokens
		merge_method_name_api = Concatenate(name='merge_methname_api')([method_name_repr, apiseq_repr])
		merge_code_repr = Concatenate(name='merge_code_repr')([merge_method_name_api, tokens_repr])

		code_repr = Dense(self.hidden_dims, activation='tanh', name='dense_coderepr')(merge_code_repr)

		self.code_repr_model = Model(inputs=[meth_name, apiseq, tokens3], outputs=[code_repr], name='code_repr_model')
		self.code_repr_model.summary()

		self.output = Model(inputs=self.code_repr_model.input, outputs=self.code_repr_model.get_layer('tokensT').output)
		self.output.summary()

		#  2 -- description
		desc = Input(shape=(self.desc_len,), dtype='int32', name='desc')

		# desc
		# embedding layer
		desc_out = self.transformer_desc(desc)

		# max pooling

		maxpool = Lambda(lambda x: k.max(x, axis=1, keepdims=False), output_shape=lambda x: (x[0], x[2]),
		                 name='maxpooling_desc')
		desc_pool = maxpool(desc_out)
		activation = Activation('tanh', name='active_desc')
		desc_repr = activation(desc_pool)

		self.desc_repr_model = Model(inputs=[desc], outputs=[desc_repr], name='desc_repr_model')
		self.desc_repr_model.summary()

		#  3 -- cosine similarity
		code_repr = self.code_repr_model([meth_name, apiseq, tokens3])

		desc_repr = self.desc_repr_model([desc])

		cos_sim = Dot(axes=1, normalize=True, name='cos_sim')([code_repr, desc_repr])

		sim_model = Model(inputs=[meth_name, apiseq, tokens3, desc], outputs=[cos_sim], name='sim_model')
		self.sim_model = sim_model

		self.sim_model.summary()

		#  4 -- build training model
		good_sim = sim_model([self.meth_name, self.apiseq, self.tokens, self.desc_good])
		bad_sim = sim_model([self.meth_name, self.apiseq, self.tokens, self.desc_bad])
		loss = Lambda(lambda x: k.maximum(1e-6, self.margin - (x[0] - x[1])), output_shape=lambda x: x[0], name='loss')(
			[good_sim, bad_sim])

		self.training_model = Model(inputs=[self.meth_name, self.apiseq, self.tokens, self.desc_good, self.desc_bad],
		                            outputs=[loss], name='training_model')

		self.training_model.summary()
示例#8
0
    def MULT(self, sent1, sent2, sent1_mask, sent2_mask):
        from tensorflow.python.keras.layers import Dense, Dot

        dim = sent1.get_shape().as_list()[-1]
        length1 = sent1.get_shape().as_list()[1]
        length2 = sent2.get_shape().as_list()[1]
        temp_W = tf.layers.dense(sent2, dim, name="dense")  # (B, L2, dim)
        temp_W = Dot(axes=[2, 2])([sent1, temp_W])  # (B, L1, L2)

        if sent1_mask is not None:
            s1_mask_exp = tf.expand_dims(sent1_mask, axis=2)  # (B, L1, 1)
            s2_mask_exp = tf.expand_dims(sent2_mask, axis=1)  # (B, 1, L2)
            temp_W1 = temp_W - (1 - s1_mask_exp) * 1e20
            temp_W2 = temp_W - (1 - s2_mask_exp) * 1e20
        else:
            temp_W1 = temp_W
            temp_W2 = temp_W

        W1 = tf.nn.softmax(temp_W1, axis=1)
        W2 = tf.nn.softmax(temp_W2, axis=2)

        W1 = tf.transpose(W1, perm=[0, 2, 1])

        w1_val, w1_index = tf.nn.top_k(W1, k=20)
        w2_val, w2_index = tf.nn.top_k(W2, k=20)

        sent1_repeat = tf.tile(tf.expand_dims(sent1, axis=1),
                               [1, length2, 1, 1])
        sent2_repeat = tf.tile(tf.expand_dims(sent2, axis=1),
                               [1, length1, 1, 1])

        sent1_top = tf.batch_gather(sent1_repeat, w1_index)
        sent2_top = tf.batch_gather(sent2_repeat, w2_index)

        w1_val = w1_val / tf.reduce_sum(w1_val, axis=2, keepdims=True)
        w2_val = w2_val / tf.reduce_sum(w2_val, axis=2, keepdims=True)
        w1_val = tf.expand_dims(w1_val, axis=3)
        w2_val = tf.expand_dims(w2_val, axis=3)

        M1 = tf.reduce_sum(w2_val * sent2_top, axis=2)
        M2 = tf.reduce_sum(w1_val * sent1_top, axis=2)

        # M1 = Dot(axes=[2, 1])([W2, sent2])
        # M2 = Dot(axes=[1, 1])([W1, sent1])

        # s1_cat = tf.concat([M2 - sent2, M2 * sent2], axis=-1)
        # s2_cat = tf.concat([M1 - sent1, M1 * sent1], axis=-1)

        # S1 = tf.layers.dense(s1_cat, dim, activation=tf.nn.relu, name="cat_dense")
        # S2 = tf.layers.dense(s2_cat, dim, activation=tf.nn.relu, name="cat_dense", reuse=True)

        # if self.is_training:
        #     S1 = dropout(S1, dropout_prob=0.1)
        #     S2 = dropout(S2, dropout_prob=0.1)
        #
        S1 = M1 * sent1
        S2 = M2 * sent2

        if sent1_mask is not None:
            S1 = S1 * tf.expand_dims(sent1_mask, axis=2)
            S2 = S2 * tf.expand_dims(sent2_mask, axis=2)

        from layers.ParallelInfo import TextCNN
        cnn1 = TextCNN(dim, [1, 2, 3, 4, 5], dim, scope_name="cnn1")
        cnn2 = TextCNN(dim, [1, 2, 3, 4, 5], dim, scope_name="cnn2")
        S1 = cnn1(S1)
        S2 = cnn2(S2)
        feature1 = tf.layers.dense(S1, dim, activation=tf.tanh)
        feature2 = tf.layers.dense(S2, dim, activation=tf.tanh)
        feature_total = tf.concat([feature1, feature2], axis=1)

        return feature_total
示例#9
0
    def _build(self, lambda_u=0.0001, lambda_v=0.0001, optimizer='rmsprop',
               loss='mse', metrics='mse', initializer='uniform'):
        # init session on first time ref
        sess = self.session

        # user embedding
        user_InputLayer = Input(shape=(1,), dtype='int32', name='user_input')
        user_EmbeddingLayer = Embedding(input_dim=self.user_num,
                                        output_dim=self.embedding_dim,
                                        input_length=1,
                                        name='user_embedding',
                                        embeddings_regularizer=l2(lambda_u),
                                        embeddings_initializer=initializer)(user_InputLayer)
        user_EmbeddingLayer = Flatten(name='user_flatten')(user_EmbeddingLayer)

        # implicit feedback
        feedback_InputLayer = Input(shape=(None,), dtype='int32', name='implicit_feedback')
        feedback_EmbeddingLayer = Embedding(input_dim=self.item_num + 1,
                                            output_dim=self.embedding_dim,
                                            name='implicit_feedback_embedding',
                                            embeddings_regularizer=l2(lambda_v),
                                            embeddings_initializer=initializer,
                                            mask_zero=True)(feedback_InputLayer)
        feedback_EmbeddingLayer = MeanPoolingLayer()(feedback_EmbeddingLayer)

        user_EmbeddingLayer = Add()([user_EmbeddingLayer, feedback_EmbeddingLayer])

        # user bias
        user_BiasLayer = Embedding(input_dim=self.user_num, output_dim=1, input_length=1,
                                   name='user_bias', embeddings_regularizer=l2(lambda_u),
                                   embeddings_initializer=Zeros())(user_InputLayer)
        user_BiasLayer = Flatten()(user_BiasLayer)

        # item embedding
        item_InputLayer = Input(shape=(1,), dtype='int32', name='item_input')
        item_EmbeddingLayer = Embedding(input_dim=self.item_num, output_dim=self.embedding_dim, input_length=1,
                                        name='item_embedding', embeddings_regularizer=l2(lambda_v),
                                        embeddings_initializer=RandomNormal(mean=0, stddev=1))(item_InputLayer)
        item_EmbeddingLayer = Flatten(name='item_flatten')(item_EmbeddingLayer)

        # item bias
        item_BiasLayer = Embedding(input_dim=self.item_num, output_dim=1, input_length=1,
                                   name='item_bias', embeddings_regularizer=l2(lambda_v),
                                   embeddings_initializer=Zeros())(item_InputLayer)
        item_BiasLayer = Flatten()(item_BiasLayer)

        # rating prediction
        dotLayer = Dot(axes=-1, name='dot_layer')([user_EmbeddingLayer, item_EmbeddingLayer])

        # add mu, user bias and item bias
        dotLayer = ConstantLayer(mu=self.mu)(dotLayer)
        dotLayer = Add()([dotLayer, user_BiasLayer])
        dotLayer = Add()([dotLayer, item_BiasLayer])

        # create model
        self._model = Model(inputs=[user_InputLayer, item_InputLayer, feedback_InputLayer], outputs=[dotLayer])

        # compile model
        optimizer_instance = getattr(tf.keras.optimizers, optimizer.optimizer)(**optimizer.kwargs)
        losses = getattr(tf.keras.losses, loss)
        self._model.compile(optimizer=optimizer_instance,
                            loss=losses, metrics=metrics)
        # pick user_embedding and user_bias for aggregating
        self._trainable_weights = {v.name.split("/")[0]: v for v in self._model.trainable_weights}
        LOGGER.debug(f"trainable weights {self._trainable_weights}")
        self._aggregate_weights = {"user_embedding": self._trainable_weights["user_embedding"],
                                   "user_bias": self._trainable_weights["user_bias"]}
示例#10
0
    def build(self):

        # 1 -- CodeNN
        methodname = Input(shape=(self.methname_len, ),
                           dtype='int32',
                           name='methodname')
        apiseq = Input(shape=(self.apiseq_len, ), dtype='int32', name='apiseq')
        tokens = Input(shape=(self.tokens_len, ), dtype='int32', name='tokens')

        # methodname
        # embedding layer
        init_emd_weights = np.load(
            self.data_dir + self.init_embed_weights_methodname
        ) if self.init_embed_weights_methodname is not None else None
        init_emd_weights = init_emd_weights if init_emd_weights is None else [
            init_emd_weights
        ]

        embedding = Embedding(input_dim=self.vocab_size,
                              output_dim=self.embed_dims,
                              weights=init_emd_weights,
                              mask_zero=False,
                              name='embedding_methodname')

        methodname_embedding = embedding(methodname)

        # dropout
        dropout = Dropout(0.25, name='dropout_methodname_embed')
        methodname_dropout = dropout(methodname_embedding)

        # forward rnn
        fw_rnn = LSTM(self.lstm_dims,
                      recurrent_dropout=0.2,
                      return_sequences=True,
                      name='lstm_methodname_fw')

        # backward rnn
        bw_rnn = LSTM(self.lstm_dims,
                      recurrent_dropout=0.2,
                      return_sequences=True,
                      go_backwards=True,
                      name='lstm_methodname_bw')

        methodname_fw = fw_rnn(methodname_dropout)
        methodname_bw = bw_rnn(methodname_dropout)

        dropout = Dropout(0.25, name='dropout_methodname_rnn')
        methodname_fw_dropout = dropout(methodname_fw)
        methodname_bw_dropout = dropout(methodname_bw)

        # max pooling
        maxpool = Lambda(lambda x: K.max(x, axis=1, keepdims=False),
                         output_shape=lambda x: (x[0], x[2]),
                         name='maxpooling_methodname')
        methodname_pool = Concatenate(name='concat_methodname_lstm')(
            [maxpool(methodname_fw_dropout),
             maxpool(methodname_bw_dropout)])
        activation = Activation('tanh', name='active_methodname')
        methodname_repr = activation(methodname_pool)

        # apiseq
        # embedding layer
        embedding = Embedding(input_dim=self.vocab_size,
                              output_dim=self.embed_dims,
                              mask_zero=False,
                              name='embedding_apiseq')

        apiseq_embedding = embedding(apiseq)

        # dropout
        dropout = Dropout(0.25, name='dropout_apiseq_embed')
        apiseq_dropout = dropout(apiseq_embedding)

        # forward rnn
        fw_rnn = LSTM(self.lstm_dims,
                      return_sequences=True,
                      recurrent_dropout=0.2,
                      name='lstm_apiseq_fw')

        # backward rnn
        bw_rnn = LSTM(self.lstm_dims,
                      return_sequences=True,
                      recurrent_dropout=0.2,
                      go_backwards=True,
                      name='lstm_apiseq_bw')

        apiseq_fw = fw_rnn(apiseq_dropout)
        apiseq_bw = bw_rnn(apiseq_dropout)

        dropout = Dropout(0.25, name='dropout_apiseq_rnn')
        apiseq_fw_dropout = dropout(apiseq_fw)
        apiseq_bw_dropout = dropout(apiseq_bw)

        # max pooling

        maxpool = Lambda(lambda x: K.max(x, axis=1, keepdims=False),
                         output_shape=lambda x: (x[0], x[2]),
                         name='maxpooling_apiseq')
        apiseq_pool = Concatenate(name='concat_apiseq_lstm')(
            [maxpool(apiseq_fw_dropout),
             maxpool(apiseq_bw_dropout)])
        activation = Activation('tanh', name='active_apiseq')
        apiseq_repr = activation(apiseq_pool)

        # tokens
        # embedding layer
        init_emd_weights = np.load(
            self.data_dir + self.init_embed_weights_tokens
        ) if self.init_embed_weights_tokens is not None else None
        init_emd_weights = init_emd_weights if init_emd_weights is None else [
            init_emd_weights
        ]

        embedding = Embedding(input_dim=self.vocab_size,
                              output_dim=self.embed_dims,
                              weights=init_emd_weights,
                              mask_zero=False,
                              name='embedding_tokens')

        tokens_embedding = embedding(tokens)

        # dropout
        dropout = Dropout(0.25, name='dropout_tokens_embed')
        tokens_dropout = dropout(tokens_embedding)

        # forward rnn
        fw_rnn = LSTM(self.lstm_dims,
                      recurrent_dropout=0.2,
                      return_sequences=True,
                      name='lstm_tokens_fw')

        # backward rnn
        bw_rnn = LSTM(self.lstm_dims,
                      recurrent_dropout=0.2,
                      return_sequences=True,
                      go_backwards=True,
                      name='lstm_tokens_bw')

        tokens_fw = fw_rnn(tokens_dropout)
        tokens_bw = bw_rnn(tokens_dropout)

        dropout = Dropout(0.25, name='dropout_tokens_rnn')
        tokens_fw_dropout = dropout(tokens_fw)
        tokens_bw_dropout = dropout(tokens_bw)

        # max pooling
        maxpool = Lambda(lambda x: K.max(x, axis=1, keepdims=False),
                         output_shape=lambda x: (x[0], x[2]),
                         name='maxpooling_tokens')
        tokens_pool = Concatenate(name='concat_tokens_lstm')(
            [maxpool(tokens_fw_dropout),
             maxpool(tokens_bw_dropout)])
        activation = Activation('tanh', name='active_tokens')
        tokens_repr = activation(tokens_pool)

        # fusion methodname, apiseq, tokens
        merge_methname_api = Concatenate(name='merge_methname_api')(
            [methodname_repr, apiseq_repr])
        merge_code_repr = Concatenate(name='merge_code_repr')(
            [merge_methname_api, tokens_repr])

        code_repr = Dense(self.hidden_dims,
                          activation='tanh',
                          name='dense_coderepr')(merge_code_repr)

        self.code_repr_model = Model(inputs=[methodname, apiseq, tokens],
                                     outputs=[code_repr],
                                     name='code_repr_model')
        self.code_repr_model.summary()

        #  2 -- description
        desc = Input(shape=(self.desc_len, ), dtype='int32', name='desc')

        # desc
        # embedding layer
        init_emd_weights = np.load(
            self.data_dir + self.init_embed_weights_desc
        ) if self.init_embed_weights_desc is not None else None
        init_emd_weights = init_emd_weights if init_emd_weights is None else [
            init_emd_weights
        ]

        embedding = Embedding(input_dim=self.vocab_size,
                              output_dim=self.embed_dims,
                              weights=init_emd_weights,
                              mask_zero=False,
                              name='embedding_desc')

        desc_embedding = embedding(desc)

        # dropout
        dropout = Dropout(0.25, name='dropout_desc_embed')
        desc_dropout = dropout(desc_embedding)

        # forward rnn
        fw_rnn = LSTM(self.lstm_dims,
                      recurrent_dropout=0.2,
                      return_sequences=True,
                      name='lstm_desc_fw')

        # backward rnn
        bw_rnn = LSTM(self.lstm_dims,
                      recurrent_dropout=0.2,
                      return_sequences=True,
                      go_backwards=True,
                      name='lstm_desc_bw')

        desc_fw = fw_rnn(desc_dropout)
        desc_bw = bw_rnn(desc_dropout)

        dropout = Dropout(0.25, name='dropout_desc_rnn')
        desc_fw_dropout = dropout(desc_fw)
        desc_bw_dropout = dropout(desc_bw)

        # max pooling

        maxpool = Lambda(lambda x: K.max(x, axis=1, keepdims=False),
                         output_shape=lambda x: (x[0], x[2]),
                         name='maxpooling_desc')
        desc_pool = Concatenate(name='concat_desc_lstm')(
            [maxpool(desc_fw_dropout),
             maxpool(desc_bw_dropout)])
        activation = Activation('tanh', name='active_desc')
        desc_repr = activation(desc_pool)

        self.desc_repr_model = Model(inputs=[desc],
                                     outputs=[desc_repr],
                                     name='desc_repr_model')
        self.desc_repr_model.summary()

        #  3 -- cosine similarity
        code_repr = self.code_repr_model([methodname, apiseq, tokens])
        desc_repr = self.desc_repr_model([desc])

        cos_sim = Dot(axes=1, normalize=True,
                      name='cos_sim')([code_repr, desc_repr])

        sim_model = Model(inputs=[methodname, apiseq, tokens, desc],
                          outputs=[cos_sim],
                          name='sim_model')

        self.sim_model = sim_model

        self.sim_model.summary()

        #  4 -- build training model
        good_sim = sim_model(
            [self.methodname, self.apiseq, self.tokens, self.desc_good])
        bad_sim = sim_model(
            [self.methodname, self.apiseq, self.tokens, self.desc_bad])

        loss = Lambda(lambda x: K.maximum(1e-6, self.margin - x[0] + x[1]),
                      output_shape=lambda x: x[0],
                      name='loss')([good_sim, bad_sim])

        self.training_model = Model(inputs=[
            self.methodname, self.apiseq, self.tokens, self.desc_good,
            self.desc_bad
        ],
                                    outputs=[loss],
                                    name='training_model')

        self.training_model.summary()
示例#11
0
                                    output_dim=G.embedding_dimension,
                                    weights=[embeddingTwo])

word_embedding = shared_embedding_layer(word_index)
word_embedding = Lambda(lambda x: x * 1)(word_embedding)
context_embeddings = shared_embedding_layer2(context)
negative_words_embedding = shared_embedding_layer(negative_samples)
negative_words_embedding = Lambda(lambda x: x * 1)(negative_words_embedding)

# Now the context words are averaged to get the CBOW vector
cbow = Lambda(lambda x: K.mean(x, axis=1),
              output_shape=(G.embedding_dimension, ))(context_embeddings)
# The context is multiplied (dot product) with current word and negative sampled words
print(type(word_embedding))
print(type(cbow))
word_context_product = Dot(axes=-1)([word_embedding, cbow])
word_context_product = Lambda(lambda x: tf.math.sigmoid(x))(
    word_context_product)

# word_context_product = Dense(1,activation = "sigmoid")(word_context_product)
print(K.shape(word_embedding))
print(K.shape(word_context_product))
print(K.shape(cbow))
negative_context_product = Dot(axes=-1)([negative_words_embedding, cbow])
# negative_context_product = Dense(1, activation = "sigmoid")(negative_context_product)
boost = 1
import sys
if len(sys.argv) > 5:
    boost = float(sys.argv[5])
if boost > 1:
    negative_context_product = Lambda(lambda x: x * boost)(
示例#12
0
def deepSimDEF_network(args,
                       model_ind,
                       max_ann_len=None,
                       go_term_embedding_file_path=None,
                       sub_ontology_interested=None,
                       go_term_indeces=None,
                       model_summary=False):

    embedding_dim = args.embedding_dim
    activation_hidden = args.activation_hidden
    activation_highway = args.activation_highway
    activation_output = args.activation_output
    dropout = args.dropout
    embedding_dropout = args.embedding_dropout
    annotation_dropout = args.annotation_dropout
    pretrained_embedding = args.pretrained_embedding
    updatable_embedding = args.updatable_embedding
    loss = args.loss
    optimizer = args.optimizer
    learning_rate = args.learning_rate
    checkpoint = args.checkpoint
    verbose = args.verbose
    highway_layer = args.highway_layer
    cosine_similarity = args.cosine_similarity
    deepsimdef_mode = args.deepsimdef_mode

    _inputs = [
    ]  # used to represent the input data to the network (from different channels)
    _embeddings = {}  # used for weight-sharing of the embeddings
    _denses = []  # used for weight-sharing of dense layers whenever needed
    _Gene_channel = []  # for the middle part up-until highway

    if checkpoint:
        with open('{}/model_{}.json'.format(checkpoint, model_ind + 1),
                  'r') as json_file:
            model = model_from_json(json_file.read())  # load the json model
            model.load_weights('{}/model_{}.h5'.format(
                checkpoint, model_ind + 1))  # load weights into new model
            if deepsimdef_mode == 'training':
                model.compile(loss=loss, optimizer=optimizer)
            if verbose:
                print("Loaded model {} from disk".format(model_ind + 1))
            return model

    for i in range(2):  # bottom-half of the network, 2 for 2 channels

        _GO_term_channel = [
        ]  # for bottom-half until flattening maxpooled embeddings

        for sbo in sub_ontology_interested:

            _inputs.append(Input(shape=(max_ann_len[sbo], ), dtype='int32'))

            if sbo in _embeddings:
                embedding_layer = _embeddings[
                    sbo]  # for the second pair when we need weight-sharing
            else:
                if pretrained_embedding:
                    embedding_matrix = load_embedding(
                        go_term_embedding_file_path[sbo], embedding_dim,
                        go_term_indeces[sbo])
                    if verbose:
                        print(
                            "Loaded {} word vectors for {} (Model {})".format(
                                len(embedding_matrix), sbo, model_ind + 1))
                    embedding_layer = Embedding(
                        input_dim=len(go_term_indeces[sbo]) + 1,
                        output_dim=embedding_dim,
                        weights=[embedding_matrix],
                        input_length=max_ann_len[sbo],
                        trainable=updatable_embedding,
                        name="embedding_{}_{}".format(sbo, model_ind))
                else:  # without using pre-trained word embedings
                    embedding_layer = Embedding(
                        input_dim=len(go_term_indeces[sbo]) + 1,
                        output_dim=embedding_dim,
                        input_length=max_ann_len[sbo],
                        name="embedding_{}_{}".format(sbo, model_ind))
                _embeddings[sbo] = embedding_layer

            GO_term_emb = embedding_layer(_inputs[-1])

            if 0 < annotation_dropout:
                GO_term_emb = DropAnnotation(annotation_dropout)(GO_term_emb)
            if 0 < embedding_dropout:
                GO_term_emb = SpatialDropout1D(embedding_dropout)(GO_term_emb)

            GO_term_emb = MaxPooling1D(pool_size=max_ann_len[sbo])(GO_term_emb)
            GO_term_emb = Flatten()(GO_term_emb)
            _GO_term_channel.append(GO_term_emb)

        Gene_emb = Concatenate(axis=-1)(_GO_term_channel) if 1 < len(
            sub_ontology_interested) else _GO_term_channel[0]
        Dns = _denses[0] if len(_denses) == 1 else Dense(
            units=embedding_dim * len(sub_ontology_interested),
            activation=activation_hidden)
        _denses.append(Dns)

        Gene_emb = Dns(Gene_emb)
        Gene_emb = Dropout(dropout)(Gene_emb)
        _Gene_channel.append(Gene_emb)

    if cosine_similarity:
        preds = Dot(axes=1, normalize=True)(_Gene_channel)
    else:
        merge = Concatenate(axis=-1)(_Gene_channel)
        if highway_layer:
            merge = highway(merge, activation=activation_highway)
            merge = Dropout(dropout)(merge)
        merge = Dense(units=embedding_dim * len(sub_ontology_interested),
                      activation=activation_hidden)(merge)
        merge = Dropout(dropout)(merge)
        preds = Dense(units=1, activation=activation_output)(merge)

    model = Model(inputs=_inputs, outputs=preds)

    model.compile(loss=loss, optimizer=optimizer)

    model.optimizer.lr = learning_rate  # setting the learning rate of the model optimizer

    if model_summary: print(model.summary())

    if verbose:
        print("Model for fold number {} instantiated!!\n".format(model_ind +
                                                                 1))

    return model
示例#13
0
	def build(self):

		self.transformer_meth = transformer.EncoderModel(vocab_size=self.vocab_size, model_dim=self.hidden_dims,
		                                                 embed_dim=self.embed_dims, ffn_dim=self.lstm_dims,
		                                                 droput_rate=0.2, n_heads=8, max_len=self.meth_name_len,
		                                                 name='methT')

		self.transformer_apiseq = transformer.EncoderModel(vocab_size=self.vocab_size, model_dim=self.hidden_dims,
		                                                   embed_dim=self.embed_dims, ffn_dim=self.lstm_dims,
		                                                   droput_rate=0.2, n_heads=8, max_len=self.apiseq_len,
		                                                   name='apiseqT')

		self.transformer_desc = transformer.EncoderModel(vocab_size=self.vocab_size, model_dim=self.hidden_dims,
		                                                 embed_dim=self.embed_dims, ffn_dim=self.lstm_dims,
		                                                 droput_rate=0.2, n_heads=8, max_len=self.desc_len, name='descT')

		# self.transformer_ast = EncoderModel(vocab_size=self.vocab_size, model_dim=self.hidden_dims, embed_dim=self.embed_dims, ffn_dim=self.lstm_dims, droput_rate=0.2, n_heads=4, max_len=128)
		self.transformer_tokens = transformer.EncoderModel(vocab_size=self.vocab_size, model_dim=self.hidden_dims,
		                                                   embed_dim=self.embed_dims, ffn_dim=self.lstm_dims,
		                                                   droput_rate=0.2, n_heads=8, max_len=self.tokens_len,
		                                                   name='tokensT')
		# create path to store model Info

		# 1 -- CodeNN
		meth_name = Input(shape=(self.meth_name_len,), dtype='int32', name='meth_name')
		apiseq = Input(shape=(self.apiseq_len,), dtype='int32', name='apiseq')
		tokens3 = Input(shape=(self.tokens_len,), dtype='int32', name='tokens3')

		# method name
		# embedding layer

		meth_name_out = self.transformer_meth(meth_name)
		# max pooling
		maxpool = Lambda(lambda x: k.max(x, axis=1, keepdims=False), output_shape=lambda x: (x[0], x[2]),
		                 name='maxpooling_methodname')
		method_name_pool = maxpool(meth_name_out)
		activation = Activation('tanh', name='active_method_name')
		method_name_repr = activation(method_name_pool)

		# apiseq
		# embedding layer

		apiseq_out = self.transformer_apiseq(apiseq)
		# max pooling
		maxpool = Lambda(lambda x: k.max(x, axis=1, keepdims=False), output_shape=lambda x: (x[0], x[2]),
		                 name='maxpooling_apiseq')
		apiseq_pool = maxpool(apiseq_out)
		activation = Activation('tanh', name='active_apiseq')
		apiseq_repr = activation(apiseq_pool)

		# tokens
		# embedding layer
		init_emd_weights = np.load(
			self.data_dir + self.init_embed_weights_tokens) if self.init_embed_weights_tokens is not None else None
		init_emd_weights = init_emd_weights if init_emd_weights is None else [init_emd_weights]

		embedding = Embedding(
			input_dim=self.vocab_size,
			output_dim=self.embed_dims,
			weights=init_emd_weights,
			mask_zero=False,
			name='embedding_tokens'
		)
		tokens_embedding = embedding(tokens3)
		# dropout
		dropout = Dropout(0.25, name='dropout_tokens_embed')
		tokens_dropout = dropout(tokens_embedding)

		# forward rnn
		fw_rnn = LSTM(self.lstm_dims, return_sequences=True, name='lstm_tokens_fw')

		# backward rnn
		bw_rnn = LSTM(self.lstm_dims, return_sequences=True, go_backwards=True, name='lstm_tokens_bw')

		tokens_fw = fw_rnn(tokens_dropout)
		tokens_bw = bw_rnn(tokens_dropout)

		dropout = Dropout(0.25, name='dropout_tokens_rnn')
		tokens_fw_dropout = dropout(tokens_fw)
		tokens_bw_dropout = dropout(tokens_bw)

		# max pooling
		maxpool = Lambda(lambda x: k.max(x, axis=1, keepdims=False), output_shape=lambda x: (x[0], x[2]),
		                 name='maxpooling_tokens')
		tokens_pool = Concatenate(name='concat_tokens_lstm')([maxpool(tokens_fw_dropout), maxpool(tokens_bw_dropout)])
		tokens_pool = maxpool(tokens_dropout)
		activation = Activation('tanh', name='active_tokens')
		tokens_repr = activation(tokens_pool)
		tokens_repr = tf.reshape(tokens_repr, [128, 256])
		# fusion method_name, apiseq, tokens
		merge_method_name_api = Concatenate(name='merge_methname_api')([method_name_repr, apiseq_repr])
		merge_code_repr = Concatenate(name='merge_code_repr')([merge_method_name_api, tokens_repr])
		print(merge_code_repr)
		code_repr = Dense(self.hidden_dims, activation='tanh', name='dense_coderepr')(merge_code_repr)

		self.code_repr_model = Model(inputs=[meth_name, apiseq, tokens3], outputs=[code_repr], name='code_repr_model')
		self.code_repr_model.summary()

		# self.output = Model(inputs=self.code_repr_model.input, outputs=self.code_repr_model.get_layer('tokensT').output)
		# self.output.summary()

		#  2 -- description
		desc = Input(shape=(self.desc_len,), dtype='int32', name='desc')

		# desc
		# embedding layer
		desc_out = self.transformer_desc(desc)

		# max pooling

		maxpool = Lambda(lambda x: k.max(x, axis=1, keepdims=False), output_shape=lambda x: (x[0], x[2]),
		                 name='maxpooling_desc')
		desc_pool = maxpool(desc_out)
		activation = Activation('tanh', name='active_desc')
		desc_repr = activation(desc_pool)

		self.desc_repr_model = Model(inputs=[desc], outputs=[desc_repr], name='desc_repr_model')
		self.desc_repr_model.summary()

		#  3 -- cosine similarity
		code_repr = self.code_repr_model([meth_name, apiseq, tokens3])

		desc_repr = self.desc_repr_model([desc])

		cos_sim = Dot(axes=1, normalize=True, name='cos_sim')([code_repr, desc_repr])

		sim_model = Model(inputs=[meth_name, apiseq, tokens3, desc], outputs=[cos_sim], name='sim_model')
		self.sim_model = sim_model

		self.sim_model.summary()

		#  4 -- build training model
		good_sim = sim_model([self.meth_name, self.apiseq, self.tokens, self.desc_good])
		bad_sim = sim_model([self.meth_name, self.apiseq, self.tokens, self.desc_bad])
		loss = Lambda(lambda x: k.maximum(1e-6, self.margin - (x[0] - x[1])), output_shape=lambda x: x[0], name='loss')(
			[good_sim, bad_sim])

		self.training_model = Model(inputs=[self.meth_name, self.apiseq, self.tokens, self.desc_good, self.desc_bad],
		                            outputs=[loss], name='training_model')

		self.training_model.summary()
示例#14
0
    def build(self,
              lambda_u=0.0001,
              lambda_v=0.0001,
              optimizer='rmsprop',
              loss='mse',
              metrics='mse',
              initializer='uniform'):
        """
        Init session and create model architecture.
        :param lambda_u: lambda value of l2 norm for user embeddings.
        :param lambda_v: lambda value of l2 norm for item embeddings.
        :param optimizer: optimizer type.
        :param loss: loss type.
        :param metrics: evaluation metrics.
        :param initializer: initializer of embedding
        :return:
        """
        # init session on first time ref
        sess = self.session
        # user embedding
        user_input_layer = Input(shape=(1, ), dtype='int32', name='user_input')
        user_embedding_layer = Embedding(
            input_dim=self.user_num,
            output_dim=self.embedding_dim,
            input_length=1,
            name='user_embedding',
            embeddings_regularizer=l2(lambda_u),
            embeddings_initializer=initializer)(user_input_layer)
        user_embedding_layer = Flatten(
            name='user_flatten')(user_embedding_layer)

        # item embedding
        item_input_layer = Input(shape=(1, ), dtype='int32', name='item_input')
        item_embedding_layer = Embedding(
            input_dim=self.item_num,
            output_dim=self.embedding_dim,
            input_length=1,
            name='item_embedding',
            embeddings_regularizer=l2(lambda_v),
            embeddings_initializer=initializer)(item_input_layer)
        item_embedding_layer = Flatten(
            name='item_flatten')(item_embedding_layer)

        # rating prediction
        dot_layer = Dot(axes=-1, name='dot_layer')(
            [user_embedding_layer, item_embedding_layer])
        self._model = Model(inputs=[user_input_layer, item_input_layer],
                            outputs=[dot_layer])

        # compile model
        optimizer_instance = getattr(tf.keras.optimizers,
                                     optimizer.optimizer)(**optimizer.kwargs)
        losses = getattr(tf.keras.losses, loss)
        self._model.compile(optimizer=optimizer_instance,
                            loss=losses,
                            metrics=metrics)
        # pick user_embedding for aggregating
        self._trainable_weights = {
            v.name.split("/")[0]: v
            for v in self._model.trainable_weights
        }
        self._aggregate_weights = {
            "user_embedding": self._trainable_weights["user_embedding"]
        }