def testNegativeDim(self): with self.session(use_gpu=True) as sess: cdim = constant_op.constant(-2, dtypes.int32) s0 = constant_op.constant([2, 3, 5], dtypes.int32) s1 = constant_op.constant([2, 7, 5], dtypes.int32) s2 = constant_op.constant([2, 20, 5], dtypes.int32) off = gen_array_ops.concat_offset(cdim, [s0, s1, s2]) ans = self.evaluate(off) self.assertAllEqual(ans, [[0, 0, 0], [0, 3, 0], [0, 10, 0]]) cdim = constant_op.constant(-3, dtypes.int32) s0 = constant_op.constant([2, 3, 5], dtypes.int32) s1 = constant_op.constant([1, 3, 5], dtypes.int32) s2 = constant_op.constant([3, 3, 5], dtypes.int32) off = gen_array_ops.concat_offset(cdim, [s0, s1, s2]) ans = self.evaluate(off) self.assertAllEqual(ans, [[0, 0, 0], [2, 0, 0], [3, 0, 0]])
def testDimMismatch(self): cdim = constant_op.constant(1, dtypes.int32) s0 = constant_op.constant([2, 3, 5], dtypes.int32) s1 = constant_op.constant([2, 7, 5, 10], dtypes.int32) off = gen_array_ops.concat_offset(cdim, [s0, s1]) with self.assertRaisesRegexp(errors_impl.InvalidArgumentError, r"should contain 3 elem"): self.evaluate(off)
def testNegativeDim(self): with self.test_session(use_gpu=True) as sess: cdim = constant_op.constant(-2, dtypes.int32) s0 = constant_op.constant([2, 3, 5], dtypes.int32) s1 = constant_op.constant([2, 7, 5], dtypes.int32) s2 = constant_op.constant([2, 20, 5], dtypes.int32) off = gen_array_ops.concat_offset(cdim, [s0, s1, s2]) ans = sess.run(off) self.assertAllEqual(ans, [[0, 0, 0], [0, 3, 0], [0, 10, 0]]) cdim = constant_op.constant(-3, dtypes.int32) s0 = constant_op.constant([2, 3, 5], dtypes.int32) s1 = constant_op.constant([1, 3, 5], dtypes.int32) s2 = constant_op.constant([3, 3, 5], dtypes.int32) off = gen_array_ops.concat_offset(cdim, [s0, s1, s2]) ans = sess.run(off) self.assertAllEqual(ans, [[0, 0, 0], [2, 0, 0], [3, 0, 0]])
def testNegativeDim(self): with test_util.use_gpu(): cdim = constant_op.constant(-2, dtypes.int32) s0 = constant_op.constant([2, 3, 5], dtypes.int32) s1 = constant_op.constant([2, 7, 5], dtypes.int32) s2 = constant_op.constant([2, 20, 5], dtypes.int32) off = gen_array_ops.concat_offset(cdim, [s0, s1, s2]) ans = self.evaluate(off) self.assertAllEqual(ans, [[0, 0, 0], [0, 3, 0], [0, 10, 0]]) cdim = constant_op.constant(-3, dtypes.int32) s0 = constant_op.constant([2, 3, 5], dtypes.int32) s1 = constant_op.constant([1, 3, 5], dtypes.int32) s2 = constant_op.constant([3, 3, 5], dtypes.int32) off = gen_array_ops.concat_offset(cdim, [s0, s1, s2]) ans = self.evaluate(off) self.assertAllEqual(ans, [[0, 0, 0], [2, 0, 0], [3, 0, 0]])
def testNotVector(self): cdim = constant_op.constant(1, dtypes.int32) s0 = constant_op.constant([[2, 3, 5]], dtypes.int32) s1 = constant_op.constant([[2, 7, 5]], dtypes.int32) off = gen_array_ops.concat_offset(cdim, [s0, s1]) with self.assertRaisesRegexp(errors_impl.InvalidArgumentError, r"should be a vector"): self.evaluate(off)
def testConcatDimOutOfRange(self): cdim = constant_op.constant(4, dtypes.int32) s0 = constant_op.constant([2, 3, 5], dtypes.int32) s1 = constant_op.constant([2, 7, 5], dtypes.int32) off = gen_array_ops.concat_offset(cdim, [s0, s1]) with self.assertRaisesRegexp(errors_impl.InvalidArgumentError, r"Concat dim is out of range: 4 vs. 3"): self.evaluate(off)
def testDimMismatch(self): cdim = constant_op.constant(1, dtypes.int32) s0 = constant_op.constant([2, 3, 5], dtypes.int32) s1 = constant_op.constant([2, 7, 5, 10], dtypes.int32) off = gen_array_ops.concat_offset(cdim, [s0, s1]) with self.assertRaisesRegex(errors_impl.InvalidArgumentError, r"should contain 3 elem"): self.evaluate(off)
def testBasic(self): with self.test_session(use_gpu=True) as sess: cdim = constant_op.constant(1, dtypes.int32) s0 = constant_op.constant([2, 3, 5], dtypes.int32) s1 = constant_op.constant([2, 7, 5], dtypes.int32) s2 = constant_op.constant([2, 20, 5], dtypes.int32) off = gen_array_ops.concat_offset(cdim, [s0, s1, s2]) ans = sess.run(off) self.assertAllEqual(ans, [[0, 0, 0], [0, 3, 0], [0, 10, 0]])
def testBasic(self): with self.session(use_gpu=True) as sess: cdim = constant_op.constant(1, dtypes.int32) s0 = constant_op.constant([2, 3, 5], dtypes.int32) s1 = constant_op.constant([2, 7, 5], dtypes.int32) s2 = constant_op.constant([2, 20, 5], dtypes.int32) off = gen_array_ops.concat_offset(cdim, [s0, s1, s2]) ans = sess.run(off) self.assertAllEqual(ans, [[0, 0, 0], [0, 3, 0], [0, 10, 0]])
def testBasic(self): with test_util.use_gpu(): cdim = constant_op.constant(1, dtypes.int32) s0 = constant_op.constant([2, 3, 5], dtypes.int32) s1 = constant_op.constant([2, 7, 5], dtypes.int32) s2 = constant_op.constant([2, 20, 5], dtypes.int32) off = gen_array_ops.concat_offset(cdim, [s0, s1, s2]) ans = self.evaluate(off) self.assertAllEqual(ans, [[0, 0, 0], [0, 3, 0], [0, 10, 0]])
def testSizeMismatch(self): cdim = constant_op.constant(1, dtypes.int32) s0 = constant_op.constant([2, 3, 5], dtypes.int32) s1 = constant_op.constant([2, 7, 10], dtypes.int32) off = gen_array_ops.concat_offset(cdim, [s0, s1]) with self.assertRaisesRegexp( errors_impl.InvalidArgumentError, r"All dimensions except 1 must match. Input 1 has shape \[2 7 10\] " r"and doesn't match input 0 with shape \[2 3 5\]."): self.evaluate(off)
def testBasic(self): with self.session(): with self.test_scope(): cdim = constant_op.constant(1, dtypes.int32) s0 = constant_op.constant([2, 3, 5], dtypes.int32) s1 = constant_op.constant([2, 7, 5], dtypes.int32) s2 = constant_op.constant([2, 20, 5], dtypes.int32) off = gen_array_ops.concat_offset(cdim, [s0, s1, s2]) ans = self.evaluate(off) self.assertAllEqual(ans, [[0, 0, 0], [0, 3, 0], [0, 10, 0]])
def testBasic(self): with self.cached_session() as sess: with self.test_scope(): cdim = constant_op.constant(1, dtypes.int32) s0 = constant_op.constant([2, 3, 5], dtypes.int32) s1 = constant_op.constant([2, 7, 5], dtypes.int32) s2 = constant_op.constant([2, 20, 5], dtypes.int32) off = gen_array_ops.concat_offset(cdim, [s0, s1, s2]) ans = self.evaluate(off) self.assertAllEqual(ans, [[0, 0, 0], [0, 3, 0], [0, 10, 0]])
def _ConcatGradHelper(op, grad, start_value_index, end_value_index, dim_index): """Gradient for concat op. Args: op: An operation. grad: `Tensor` or `IndexedSlices` representing the gradients with respect to each output of the op. start_value_index: An integer index of the first value in the op.inputs. end_value_index: An integer index of the last value in the op.inputs. dim_index: An interger index of concat_dim or axis parameter in op.inputs. Returns: Tensors representing the partial gradients with respect to each input of the op. Raises: ValueError: if concat_dim/axis is not statically known. """ def _CreateDenseMaskAndBegin(sizes, concat_dim): """Create variables for iteratively slicing a dense gradients tensor.""" # Since shape is 1-D, shape_of_shape = [rank-of-inputs] shape_of_shape = array_ops.shape(sizes[0]) # Make a vector of length equal to the input's dimensions, # with 0's everywhere and 1 in the concat dim position. # Note: Can't use sparse_to_dense since it isn't GPU-capable (for now) mask = array_ops.concat([ array_ops.fill(array_ops.expand_dims(concat_dim, 0), 0), [1], array_ops.fill(shape_of_shape - concat_dim - 1, 0) ], 0) begin = array_ops.fill(shape_of_shape, 0) return mask, begin def _ExtractInputShapes(inputs): """Extract the shapes of a set of input tensors.""" if context.executing_eagerly(): return array_ops.shape_n(inputs) sizes = [] fully_known = True for x in inputs: input_shape = array_ops.shape(x) if not isinstance(input_shape, ops.Tensor) or input_shape.op.type != "Const": fully_known = False break sizes.append(input_shape) if fully_known: return sizes else: return array_ops.shape_n(inputs) # Degenerate concatenation, just return grad. if len(op.inputs) == 2: return grad + [None] if end_value_index <= dim_index else [None] + grad concat_dim = op.inputs[dim_index] input_values = op.inputs[start_value_index:end_value_index] out_grads = [] if isinstance(grad, ops.Tensor): if context.executing_eagerly(): # Using mod here for convenience since concat_dim is already verified # in concat implementation to be within the allowed [-rank, rank) range. non_neg_concat_dim = (concat_dim._numpy().item(0) % input_values[0]._rank()) # pylint: disable=protected-access # All inputs are guaranteed to be EagerTensors in eager mode sizes = pywrap_tensorflow.TFE_Py_TensorShapeSlice( input_values, non_neg_concat_dim) out_grads = array_ops.split(grad, sizes, non_neg_concat_dim) else: if constant_op.is_constant(concat_dim): # If concat_dim is a constant defined in a different context, # then we duplicate it in the current context to avoid passing it # through an Enter node. # This is a small optimization in general, but it is required when # compiling with XLA, as XLA needs the concat input to be folded into a # constant. grad_context = control_flow_util.GetOutputContext(grad.op) dim_context = control_flow_util.GetOutputContext(concat_dim.op) if dim_context != grad_context: value = tensor_util.constant_value(concat_dim) concat_dim = constant_op.constant(value=value, dtype=concat_dim.dtype) # Using mod here for convenience since concat_dim is already verified # in concat implementation to be within the allowed [-rank, rank) range. non_neg_concat_dim = concat_dim % array_ops.rank(input_values[0]) # Get the inputs' tensor shapes sizes = _ExtractInputShapes(input_values) # The magic number of 16 was found through benchmarking a range of sizes # on CPUs and a Maxwell TitanX. A speedup was seen in a large majority of # cases when switching implementations at N=16, but it is possible that # there will be a small number of performance regressions. if len(sizes) > 16: # extract the size of each input along the concat dimension sizes = array_ops.squeeze( array_ops.slice(array_ops.stack(sizes, axis=1), [non_neg_concat_dim, 0], [1, -1])) out_grads = array_ops.split(grad, sizes, non_neg_concat_dim) else: offset = gen_array_ops.concat_offset(non_neg_concat_dim, sizes) for (begin, size) in zip(offset, sizes): out_grads.append(array_ops.slice(grad, begin, size)) elif isinstance(grad, ops.IndexedSlices): # Using mod here for convenience since concat_dim is already verified # in concat implementation to be within the allowed [-rank, rank) range. non_neg_concat_dim = concat_dim % array_ops.rank(input_values[0]) concat_dim_static = tensor_util.constant_value(concat_dim) if concat_dim_static is None: raise ValueError("Can only compute IndexedSlices gradient with " "statically-known concat_dim") if concat_dim_static < 0: rank = tensor_util.constant_value(array_ops.rank(input_values[0])) if rank is None: raise ValueError( "Can only compute IndexedSlices gradient with " "negative concat_dim when first value rank is " "statically-known.") concat_dim_static %= rank # Get the inputs' tensor shapes sizes = [array_ops.shape(x) for x in input_values] if concat_dim_static > 0: # IndexedSlices, non_neg_concat_dim > 0. Each input gets IndexedSlices # gradients with all the indices, but with grad.values sliced accordingly. # This is like the Tensor case, except shape(grad.values)[0] is not equal # to shape(sizes[i])[0], since only a subset of the dim-0 values are # stored. mask, begin = _CreateDenseMaskAndBegin(sizes, non_neg_concat_dim) for size in sizes: new_values = array_ops.slice( grad.values, begin, array_ops.concat( [[-1], array_ops.slice(size, [1], [-1])], 0)) out_grads.append( ops.IndexedSlices(new_values, grad.indices, size)) # Lint complains begin = begin + ... begin = math_ops.add(begin, size * mask) else: # IndexedSlices, concat_dim == 0. Each input gets IndexedSlices gradients # only for the relevant indices. start = constant_op.constant(0, dtype=grad.indices.dtype) for size in sizes: size_concat_dim = array_ops.gather(size, non_neg_concat_dim) if size_concat_dim.dtype != grad.indices.dtype: size_concat_dim = math_ops.cast(size_concat_dim, dtype=grad.indices.dtype) end = start + size_concat_dim # Compute the 1-D Tensor of indices relevant for this input. indices_to_select = array_ops.squeeze(array_ops.where( math_ops.logical_and(grad.indices >= start, grad.indices < end)), axis=[1]) new_indices = array_ops.gather(grad.indices, indices_to_select) - start new_values = array_ops.gather(grad.values, indices_to_select) out_grads.append( ops.IndexedSlices(new_values, new_indices, size)) start = end else: raise TypeError("Expected Tensor or IndexedSlices, got %s" % type(grad)) return (out_grads + [None] if end_value_index <= dim_index else [None] + out_grads)
def _ConcatGradHelper(op, grad, start_value_index, end_value_index, dim_index): """Gradient for concat op. Args: op: An operation. grad: `Tensor` or `IndexedSlices` representing the gradients with respect to each output of the op. start_value_index: An integer index of the first value in the op.inputs. end_value_index: An integer index of the last value in the op.inputs. dim_index: An interger index of concat_dim or axis parameter in op.inputs. Returns: Tensors representing the partial gradients with respect to each input of the op. Raises: ValueError: if concat_dim/axis is not statically known. """ def _CreateDenseMaskAndBegin(sizes, concat_dim): """Create variables for iteratively slicing a dense gradients tensor.""" # Since shape is 1-D, shape_of_shape = [rank-of-inputs] shape_of_shape = array_ops.shape(sizes[0]) # Make a vector of length equal to the input's dimensions, # with 0's everywhere and 1 in the concat dim position. # Note: Can't use sparse_to_dense since it isn't GPU-capable (for now) mask = array_ops.concat([ array_ops.fill(array_ops.expand_dims(concat_dim, 0), 0), [1], array_ops.fill(shape_of_shape - concat_dim - 1, 0) ], 0) begin = array_ops.fill(shape_of_shape, 0) return mask, begin def _ExtractInputShapes(inputs): """Extract the shapes of a set of input tensors.""" if context.executing_eagerly(): return array_ops.shape_n(inputs) sizes = [] fully_known = True for x in inputs: input_shape = array_ops.shape(x) if not isinstance(input_shape, ops.Tensor) or input_shape.op.type != "Const": fully_known = False break sizes.append(input_shape) if fully_known: return sizes else: return array_ops.shape_n(inputs) # Degenerate concatenation, just return grad. if len(op.inputs) == 2: return grad + [None] if end_value_index <= dim_index else [None] + grad concat_dim = op.inputs[dim_index] input_values = op.inputs[start_value_index:end_value_index] out_grads = [] if isinstance(grad, ops.Tensor): if context.executing_eagerly(): # Using mod here for convenience since concat_dim is already verified # in concat implementation to be within the allowed [-rank, rank) range. non_neg_concat_dim = ( concat_dim._numpy().item(0) % input_values[0]._rank()) # pylint: disable=protected-access # All inputs are guaranteed to be EagerTensors in eager mode sizes = pywrap_tensorflow.TFE_Py_TensorShapeSlice(input_values, non_neg_concat_dim) out_grads = array_ops.split(grad, sizes, non_neg_concat_dim) else: if constant_op.is_constant(concat_dim): # If concat_dim is a constant defined in a different context, # then we duplicate it in the current context to avoid passing it # through an Enter node. # This is a small optimization in general, but it is required when # compiling with XLA, as XLA needs the concat input to be folded into a # constant. grad_context = control_flow_util.GetOutputContext(grad.op) dim_context = control_flow_util.GetOutputContext(concat_dim.op) if dim_context != grad_context: value = tensor_util.constant_value(concat_dim) concat_dim = constant_op.constant(value=value, dtype=concat_dim.dtype) # Using mod here for convenience since concat_dim is already verified # in concat implementation to be within the allowed [-rank, rank) range. non_neg_concat_dim = concat_dim % array_ops.rank(input_values[0]) # Get the inputs' tensor shapes sizes = _ExtractInputShapes(input_values) # The magic number of 16 was found through benchmarking a range of sizes # on CPUs and a Maxwell TitanX. A speedup was seen in a large majority of # cases when switching implementations at N=16, but it is possible that # there will be a small number of performance regressions. if len(sizes) > 16: # extract the size of each input along the concat dimension sizes = array_ops.squeeze( array_ops.slice( array_ops.stack(sizes, axis=1), [non_neg_concat_dim, 0], [1, -1])) out_grads = array_ops.split(grad, sizes, non_neg_concat_dim) else: offset = gen_array_ops.concat_offset(non_neg_concat_dim, sizes) for (begin, size) in zip(offset, sizes): out_grads.append(array_ops.slice(grad, begin, size)) elif isinstance(grad, ops.IndexedSlices): # Using mod here for convenience since concat_dim is already verified # in concat implementation to be within the allowed [-rank, rank) range. non_neg_concat_dim = concat_dim % array_ops.rank(input_values[0]) concat_dim_static = tensor_util.constant_value(concat_dim) if concat_dim_static is None: raise ValueError("Can only compute IndexedSlices gradient with " "statically-known concat_dim") if concat_dim_static < 0: rank = tensor_util.constant_value(array_ops.rank(input_values[0])) if rank is None: raise ValueError("Can only compute IndexedSlices gradient with " "negative concat_dim when first value rank is " "statically-known.") concat_dim_static %= rank # Get the inputs' tensor shapes sizes = [array_ops.shape(x) for x in input_values] if concat_dim_static > 0: # IndexedSlices, non_neg_concat_dim > 0. Each input gets IndexedSlices # gradients with all the indices, but with grad.values sliced accordingly. # This is like the Tensor case, except shape(grad.values)[0] is not equal # to shape(sizes[i])[0], since only a subset of the dim-0 values are # stored. mask, begin = _CreateDenseMaskAndBegin(sizes, non_neg_concat_dim) for size in sizes: new_values = array_ops.slice( grad.values, begin, array_ops.concat([[-1], array_ops.slice(size, [1], [-1])], 0)) out_grads.append(ops.IndexedSlices(new_values, grad.indices, size)) # Lint complains begin = begin + ... begin = math_ops.add(begin, size * mask) else: # IndexedSlices, concat_dim == 0. Each input gets IndexedSlices gradients # only for the relevant indices. start = constant_op.constant(0, dtype=grad.indices.dtype) for size in sizes: size_concat_dim = array_ops.gather(size, non_neg_concat_dim) if size_concat_dim.dtype != grad.indices.dtype: size_concat_dim = math_ops.cast( size_concat_dim, dtype=grad.indices.dtype) end = start + size_concat_dim # Compute the 1-D Tensor of indices relevant for this input. indices_to_select = array_ops.squeeze( array_ops.where( math_ops.logical_and(grad.indices >= start, grad.indices < end)), axis=[1]) new_indices = array_ops.gather(grad.indices, indices_to_select) - start new_values = array_ops.gather(grad.values, indices_to_select) out_grads.append(ops.IndexedSlices(new_values, new_indices, size)) start = end else: raise TypeError("Expected Tensor or IndexedSlices, got %s" % type(grad)) return (out_grads + [None] if end_value_index <= dim_index else [None] + out_grads)