def export_outputs_for_mode(mode, serving_export_outputs=None, predictions=None, loss=None, metrics=None): """Util function for constructing a `ExportOutput` dict given a mode. The returned dict can be directly passed to `build_all_signature_defs` helper function as the `export_outputs` argument, used for generating a SignatureDef map. Args: mode: A `ModeKeys` specifying the mode. serving_export_outputs: Describes the output signatures to be exported to `SavedModel` and used during serving. Should be a dict or None. predictions: A dict of Tensors or single Tensor representing model predictions. This argument is only used if serving_export_outputs is not set. loss: A dict of Tensors or single Tensor representing calculated loss. metrics: A dict of (metric_value, update_op) tuples, or a single tuple. metric_value must be a Tensor, and update_op must be a Tensor or Op Returns: Dictionary mapping the a key to an `tf.estimator.export.ExportOutput` object The key is the expected SignatureDef key for the mode. Raises: ValueError: if an appropriate ExportOutput cannot be found for the mode. """ if mode not in SIGNATURE_KEY_MAP: raise ValueError( f'Export output type not found for `mode`: {mode}. Expected one of: ' f'{list(SIGNATURE_KEY_MAP.keys())}.\n' 'One likely error is that V1 Estimator Modekeys were somehow passed to ' 'this function. Please ensure that you are using the new ModeKeys.' ) signature_key = SIGNATURE_KEY_MAP[mode] if mode_keys.is_predict(mode): return get_export_outputs(serving_export_outputs, predictions) elif mode_keys.is_train(mode): return { signature_key: export_output_lib.TrainOutput(loss=loss, predictions=predictions, metrics=metrics) } else: return { signature_key: export_output_lib.EvalOutput(loss=loss, predictions=predictions, metrics=metrics) }
def export_outputs_for_mode( mode, serving_export_outputs=None, predictions=None, loss=None, metrics=None): """Util function for constructing a `ExportOutput` dict given a mode. The returned dict can be directly passed to `build_all_signature_defs` helper function as the `export_outputs` argument, used for generating a SignatureDef map. Args: mode: A `ModeKeys` specifying the mode. serving_export_outputs: Describes the output signatures to be exported to `SavedModel` and used during serving. Should be a dict or None. predictions: A dict of Tensors or single Tensor representing model predictions. This argument is only used if serving_export_outputs is not set. loss: A dict of Tensors or single Tensor representing calculated loss. metrics: A dict of (metric_value, update_op) tuples, or a single tuple. metric_value must be a Tensor, and update_op must be a Tensor or Op Returns: Dictionary mapping the a key to an `tf.estimator.export.ExportOutput` object The key is the expected SignatureDef key for the mode. Raises: ValueError: if an appropriate ExportOutput cannot be found for the mode. """ if mode not in SIGNATURE_KEY_MAP: raise ValueError( 'Export output type not found for mode: {}. Expected one of: {}.\n' 'One likely error is that V1 Estimator Modekeys were somehow passed to ' 'this function. Please ensure that you are using the new ModeKeys.' .format(mode, SIGNATURE_KEY_MAP.keys())) signature_key = SIGNATURE_KEY_MAP[mode] if mode_keys.is_predict(mode): return get_export_outputs(serving_export_outputs, predictions) elif mode_keys.is_train(mode): return {signature_key: export_output_lib.TrainOutput( loss=loss, predictions=predictions, metrics=metrics)} else: return {signature_key: export_output_lib.EvalOutput( loss=loss, predictions=predictions, metrics=metrics)}