示例#1
0
def optimize_for_inference(input_graph_def, input_node_names, output_node_names,
                           placeholder_type_enum):
  """Applies a series of inference optimizations on the input graph.

  Args:
    input_graph_def: A GraphDef containing a training model.
    input_node_names: A list of names of the nodes that are fed inputs during
      inference.
    output_node_names: A list of names of the nodes that produce the final
      results.
    placeholder_type_enum: The AttrValue enum for the placeholder data type, or
        a list that specifies one value per input node name.

  Returns:
    An optimized version of the input graph.
  """
  ensure_graph_is_valid(input_graph_def)
  optimized_graph_def = input_graph_def
  optimized_graph_def = strip_unused_lib.strip_unused(optimized_graph_def,
                                                      input_node_names,
                                                      output_node_names,
                                                      placeholder_type_enum)
  optimized_graph_def = graph_util.remove_training_nodes(
      optimized_graph_def, output_node_names)
  optimized_graph_def = fold_batch_norms(optimized_graph_def)
  optimized_graph_def = fuse_resize_and_conv(optimized_graph_def,
                                             output_node_names)
  ensure_graph_is_valid(optimized_graph_def)
  return optimized_graph_def
示例#2
0
    def freeze(self):
        gd = self.sess.graph.as_graph_def()
        print("convt..")
        for node in gd.node:
            if node.op == 'RefSwitch':
                node.op = 'Switch'
                for index in range(len(node.input)):
                    if 'moving_' in node.input[index]:
                        node.input[index] = node.input[index] + '/read'
            elif node.op == 'AssignSub':
                node.op = 'Sub'
                if 'use_locking' in node.attr: del node.attr['use_locking']
        print("const...")
        gd = graph_util.convert_variables_to_constants(self.sess, gd, self.outputNodes)

        optlib.ensure_graph_is_valid(gd)
        input_node_names = self.inputNodes
        output_node_names = self.outputNodes
        placeholder_type_enum = self.inputNodesTypes
        for i in range(len(placeholder_type_enum)):
            placeholder_type_enum[i] = placeholder_type_enum[i].as_datatype_enum
        print("strip...")
        gd = strip_unused_lib.strip_unused(gd, input_node_names, output_node_names, placeholder_type_enum)
        optlib.ensure_graph_is_valid(gd)
        filename = 'frozen ' + util.getTimeStamp() + '.pb'
        tf.train.write_graph(gd, self.parentPath, filename, as_text=False)
        return os.path.join(self.parentPath, filename)
示例#3
0
 def strip_subgraphs(self):
     input_node_names = self._get_bare_input_names()
     output_node_names = self._get_bare_output_names()
     self.gdef = strip_unused_lib.strip_unused(
         input_graph_def=self.original_gdef,
         input_node_names=input_node_names,
         output_node_names=output_node_names,
         placeholder_type_enum=dtypes.float32.as_datatype_enum)
示例#4
0
 def strip_subgraphs(self) :
     input_node_names = ['Preprocessor/sub']
     output_node_names = ['concat', 'concat_1']
     self.gdef = strip_unused_lib.strip_unused(
         input_graph_def = self.original_gdef,
         input_node_names = input_node_names,
         output_node_names = output_node_names,
         placeholder_type_enum = dtypes.float32.as_datatype_enum)
示例#5
0
文件: conv.py 项目: s4rv4d/ProvIns
def optimize_graph(graph):
    gdef = strip_unused_lib.strip_unused(
            input_graph_def = graph.as_graph_def(),
            input_node_names = [input_node],
            output_node_names = [bbox_output_node, class_output_node],
            placeholder_type_enum = dtypes.float32.as_datatype_enum)

    with gfile.GFile(frozen_model_file, "wb") as f:
        f.write(gdef.SerializeToString())
    def __init__(self, frozen_file, inputshape, in_nodes, dest_nodes):
        super(TensorflowParser2, self).__init__()

        self.weight_loaded = True
        # load model files into TensorFlow graph
        with open(frozen_file, 'rb') as f:
            serialized = f.read()
        tensorflow.reset_default_graph()
        original_gdef = tensorflow.GraphDef()

        original_gdef.ParseFromString(serialized)

        in_type_list = {}
        for n in original_gdef.node:
            if n.name in in_nodes:
                in_type_list[n.name] = n.attr['dtype'].type

        from tensorflow.python.tools import strip_unused_lib
        from tensorflow.python.framework import dtypes
        from tensorflow.python.platform import gfile
        original_gdef = strip_unused_lib.strip_unused(
                input_graph_def = original_gdef,
                input_node_names = in_nodes,
                output_node_names = dest_nodes,
                placeholder_type_enum = dtypes.float32.as_datatype_enum)
        # Save it to an output file
        frozen_model_file = './frozen.pb'
        with gfile.GFile(frozen_model_file, "wb") as f:
            f.write(original_gdef.SerializeToString())
        with open(frozen_model_file, 'rb') as f:
            serialized = f.read()
        tensorflow.reset_default_graph()
        model = tensorflow.GraphDef()
        model.ParseFromString(serialized)

        output_shape_map = dict()
        input_shape_map = dict()

        with tensorflow.Graph().as_default() as g:
            input_map = {}
            for i in range(len(inputshape)):
                if in_type_list[in_nodes[i]] == 1:
                    dtype = tensorflow.float32
                elif in_type_list[in_nodes[i]] == 3:
                    dtype = tensorflow.int32
                x = tensorflow.placeholder(dtype, shape = [None] + inputshape[i])
                input_map[in_nodes[i] + ':0'] = x

            tensorflow.import_graph_def(model, name='', input_map=input_map)

        with tensorflow.Session(graph = g) as sess:
            meta_graph_def = tensorflow.train.export_meta_graph(filename='./my-model.meta')
            model = meta_graph_def.graph_def


        self.tf_graph = TensorflowGraph(model)
        self.tf_graph.build()
示例#7
0
    def __init__(self,
                 meta_file,
                 checkpoint_file,
                 dest_nodes,
                 inputShape=None,
                 in_nodes=None):
        super(TensorflowParser, self).__init__()

        # load model files into TensorFlow graph
        if meta_file:
            model = TensorflowParser._load_meta(meta_file)

        if checkpoint_file:
            self.ckpt_data = TensorflowParser._load_weights(checkpoint_file)
            self.weight_loaded = True

        # extract subgraph using in_nodes and dest_nodes
        if in_nodes != None and inputShape != None:
            from tensorflow.python.tools import strip_unused_lib
            from tensorflow.python.framework import dtypes
            from tensorflow.python.platform import gfile
            input_node_names = in_nodes.split(',')
            output_node_names = dest_nodes.split(',')
            model = strip_unused_lib.strip_unused(
                input_graph_def=model,
                input_node_names=input_node_names,
                output_node_names=output_node_names,
                placeholder_type_enum=dtypes.float32.as_datatype_enum)

            input_list = [None]
            for i in range(len(inputShape)):
                input_list.append(tensorflow.Dimension(inputShape[i]))
            tensor_input = tensorflow.TensorShape(input_list)
            # Build network graph
            self.tf_graph = TensorflowGraph(model)
            for node in self.tf_graph.model.node:
                if node.name in input_node_names:
                    node.attr['shape'].list.shape.extend(
                        [tensor_input.as_proto()])
                    node.attr['_output_shapes'].list.shape.pop(
                    )  #unknown_rank pop
                    node.attr['_output_shapes'].list.shape.extend(
                        [tensor_input.as_proto()])

        # extract subgraph using dest_nodes
        elif dest_nodes != None:
            from tensorflow.python.framework.graph_util import extract_sub_graph
            model = extract_sub_graph(model, dest_nodes.split(','))
            self.tf_graph = TensorflowGraph(model)

        else:
            self.tf_graph = TensorflowGraph(model)

        self.tf_graph.build()
示例#8
0
def optimize_graph(input_path, output_path, input_nodes, output_nodes):
    graph = tf.Graph()
    with tf.Session(graph=graph) as sess:
        tf.saved_model.loader.load(sess, [tf.saved_model.tag_constants.SERVING], input_path)

    gdef = strip_unused_lib.strip_unused(
        input_graph_def=graph.as_graph_def(),
        input_node_names=input_nodes,
        output_node_names=output_nodes,
        placeholder_type_enum=dtypes.float32.as_datatype_enum)
    with gfile.GFile(output_path, 'wb') as f:
        f.write(gdef.SerializeToString())
    return graph
示例#9
0
    def freeze(self):
        gd = self.sess.graph.as_graph_def()

        print("convt..")
        for node in gd.node:
            if node.op == 'RefSwitch':
                node.op = 'Switch'
                for index in range(len(node.input)):
                    if 'moving_' in node.input[index]:
                        node.input[index] = node.input[index] + '/read'
            elif node.op == 'AssignSub':
                node.op = 'Sub'
                if 'use_locking' in node.attr: del node.attr['use_locking']
        print("const...")
        gd = graph_util.convert_variables_to_constants(self.sess, gd,
                                                       ["output"])
        optlib.ensure_graph_is_valid(gd)

        input_node_names = []
        placeholder_type_enum = []
        if (self.useLeft):
            input_node_names.append("input_left")
            placeholder_type_enum.append(tf.float32)
        if (self.useRight):
            input_node_names.append("input_left")
            placeholder_type_enum.append(tf.float32)
        if (self.useFace):
            input_node_names.append("input_left")
            placeholder_type_enum.append(tf.float32)
        input_node_names.append("keep_prob")
        placeholder_type_enum.append(tf.float32)
        input_node_names.append("phase_train")
        placeholder_type_enum.append(tf.bool)
        output_node_names = ["output"]

        for i in range(len(placeholder_type_enum)):
            placeholder_type_enum[i] = placeholder_type_enum[
                i].as_datatype_enum

        print("strip...")
        gd = strip_unused_lib.strip_unused(gd, input_node_names,
                                           output_node_names,
                                           placeholder_type_enum)
        optlib.ensure_graph_is_valid(gd)

        filename = 'frozen ' + time.strftime(R" %m-%d_%H-%M-%S",
                                             time.localtime()) + '.pb'
        tf.train.write_graph(gd, self.parentPath, filename, as_text=False)

        return os.path.join(self.parentPath, filename)
def optimize_graph(input_path, output_path, input_nodes, output_nodes):
    graph = tf.Graph()
    with tf.Session(graph=graph) as sess:
        tf.saved_model.loader.load(sess,
                                   [tf.saved_model.tag_constants.SERVING],
                                   input_path)

    gdef = strip_unused_lib.strip_unused(
        input_graph_def=graph.as_graph_def(),
        input_node_names=input_nodes,
        output_node_names=output_nodes,
        placeholder_type_enum=dtypes.float32.as_datatype_enum)
    with gfile.GFile(output_path, 'wb') as f:
        f.write(gdef.SerializeToString())
    return graph
示例#11
0
def trim_graph_frozen(sess, graph_def, input_name_list, output_name_list, kill_norms=False):
    # this is not robust
    # Fix the batch-norm is_training issue
    # TODO: clott
    for n in graph_def.node:
        if 'drop' in n.name:
            print(n)
    if kill_norms:
        graph_def = convert_batchnorms(sess) 
        # Prune the unused nodes
        graph_def = tf.graph_util.extract_sub_graph(graph_def, dest_nodes=output_name_list)
#        for n in graph_def.node:
#            if 'BatchNorm' in n.name and len(n.input) == 5 and not n.name.startswith(
#                    'gradients') and 'Momentum' not in n.name:
#                n.attr['is_training'].b = 0
#                assert n.attr['is_training'].b == 0
#                assert n.input[3].endswith('Const')
#                assert n.input[4].endswith('Const_1')
#                n.input[3] = n.input[3].rstrip('Const') + 'moving_mean/read'
#                n.input[4] = n.input[4].rstrip('Const_1') + 'moving_variance/read'
    gdef = strip_unused_lib.strip_unused(input_graph_def=graph_def,
                                         input_node_names=input_name_list,
                                         output_node_names=output_name_list,
                                         placeholder_type_enum=dtypes.float32.as_datatype_enum)

    gdef = tf.graph_util.convert_variables_to_constants(sess, gdef, output_name_list)
    # output_graph = tf.GraphDef()
    # output_graph.node.extend(graph_def.node)
    #
    # # Prune unnecessary placeholders & grad ops
    # output_graph = tf.graph_util.convert_variables_to_constants(sess, output_graph, output_name_list)
    # nodes = output_graph.node
    # # Remove the dropout nodes
    # src, dst = inspect(nodes)
    # if src and dst:
    #     print(src, dst, nodes[src].name, nodes[dst].name)
    #     nodes[dst].input[0] = nodes[src].name
    #
    # nodes = prune(nodes, 'dropout')
    # print('bring me back')
    # # for i, n in enumerate(nodes):
    # #    if n.name == 'semantic':
    # #        n.input[0] = 'logits/semantic/BiasAdd'
    # # Rebuild a graph-def
    # graph_def = tf.GraphDef()
    # graph_def.node.extend(nodes)
    # graph_def = tf.graph_util.extract_sub_graph(graph_def, dest_nodes=output_name_list)
    return gdef
    def __init__(self, frozen_file, inputshape, in_nodes, dest_nodes):
        super(TensorflowParser2, self).__init__()

        self.weight_loaded = True
        # load model files into TensorFlow graph
        with open(frozen_file, 'rb') as f:
            serialized = f.read()
        tensorflow.reset_default_graph()
        original_gdef = tensorflow.GraphDef()

        original_gdef.ParseFromString(serialized)
        # model = original_gdef
        from tensorflow.python.tools import strip_unused_lib
        from tensorflow.python.framework import dtypes
        from tensorflow.python.platform import gfile
        input_node_names = in_nodes.split(',')
        output_node_names = dest_nodes.split(',')
        original_gdef = strip_unused_lib.strip_unused(
            input_graph_def=original_gdef,
            input_node_names=input_node_names,
            output_node_names=output_node_names,
            placeholder_type_enum=dtypes.float32.as_datatype_enum)
        # Save it to an output file
        frozen_model_file = './frozen.pb'
        with gfile.GFile(frozen_model_file, "wb") as f:
            f.write(original_gdef.SerializeToString())
        with open(frozen_model_file, 'rb') as f:
            serialized = f.read()
        tensorflow.reset_default_graph()
        model = tensorflow.GraphDef()
        model.ParseFromString(serialized)

        output_shape_map = dict()
        input_shape_map = dict()
        with tensorflow.Graph().as_default() as g:
            x = tensorflow.placeholder(tensorflow.float32,
                                       shape=[None] + inputshape)
            tensorflow.import_graph_def(model,
                                        name='',
                                        input_map={in_nodes + ':0': x})

        with tensorflow.Session(graph=g) as sess:
            meta_graph_def = tensorflow.train.export_meta_graph(
                filename='./my-model.meta')
            model = meta_graph_def.graph_def

        self.tf_graph = TensorflowGraph(model)
        self.tf_graph.build()
示例#13
0
    def __init__(self,
                 meta_file,
                 checkpoint_file,
                 dest_nodes,
                 input_shape=None,
                 in_nodes=None,
                 input_format="NCHW".encode()):
        graph_def = None
        self.weights = None
        self.inputs = in_nodes
        self.outputs = dest_nodes
        sess = tf.Session()
        if meta_file is None:
            raise Exception("meta_file must be provided")
        new_saver = tf.train.import_meta_graph(meta_file)
        if checkpoint_file is not None:
            self.weights = dict()
            new_saver.restore(sess,
                              tf.train.latest_checkpoint(checkpoint_file))
            for var in tf.global_variables():
                value = var.eval(sess)
                self.weights[var.name.split(':')[0]] = value

        self.infer = ModelInfer(sess)
        graph_def, ver = tf.get_default_graph()._as_graph_def(add_shapes=True)

        if in_nodes is not None and input_shape is not None:
            graph_def = strip_unused_lib.strip_unused(
                input_graph_def=graph_def,
                input_node_names=in_nodes,
                output_node_names=dest_nodes,
                placeholder_type_enum=dtypes.float32.as_datatype_enum)

            for node in graph_def.node:
                if node.name in in_nodes:
                    index = in_nodes.index(node.name)
                    shape = [tf.Dimension(x) for x in input_shape[index]]
                    shape_proto = tf.TensorShape(shape).as_proto()
                    node.attr['_output_shapes'].list.shape.pop()
                    node.attr['_output_shapes'].list.shape.extend(
                        [shape_proto])
                    self.infer.gen_sample_data(node.name, input_shape[index])

            self.tf_graph = TensorflowGraph(graph_def)
        else:
            raise Exception('in_nodes and output_nodes need be provided')

        self.tf_graph.build(input_format)
示例#14
0
        def do_graph_freeze(output_file=None, output_node_names=None, variables_blacklist=''):
            frozen = freeze_graph.freeze_graph_with_def_protos(
                input_graph_def=tfv1.get_default_graph().as_graph_def(),
                input_saver_def=saver.as_saver_def(),
                input_checkpoint=checkpoint_path,
                output_node_names=output_node_names,
                restore_op_name=None,
                filename_tensor_name=None,
                output_graph=output_file,
                clear_devices=False,
                variable_names_blacklist=variables_blacklist,
                initializer_nodes='')

            input_node_names = []
            return strip_unused_lib.strip_unused(
                input_graph_def=frozen,
                input_node_names=input_node_names,
                output_node_names=output_node_names.split(','),
                placeholder_type_enum=tf.float32.as_datatype_enum)
def optimize_for_inference(input_graph_def, input_node_names,
                           output_node_names, placeholder_type_enum):
  """Applies a series of inference optimizations on the input graph.

  Args:
    input_graph_def: A GraphDef containing a training model.
    input_node_names: A list of names of the nodes that are fed inputs during
      inference.
    output_node_names: A list of names of the nodes that produce the final
      results.
    placeholder_type_enum: Data type of the placeholders used for inputs.

  Returns:
    An optimized version of the input graph.
  """
  stripped_graph_def = strip_unused_lib.strip_unused(input_graph_def,
                                                     input_node_names,
                                                     output_node_names,
                                                     placeholder_type_enum)
  detrained_graph_def = graph_util.remove_training_nodes(stripped_graph_def)
  folded_graph_def = fold_batch_norms(detrained_graph_def)
  return folded_graph_def
示例#16
0
def optimize_for_inference(input_graph_def, input_node_names,
                           output_node_names, placeholder_type_enum):
    """Applies a series of inference optimizations on the input graph.

  Args:
    input_graph_def: A GraphDef containing a training model.
    input_node_names: A list of names of the nodes that are fed inputs during
      inference.
    output_node_names: A list of names of the nodes that produce the final
      results.
    placeholder_type_enum: Data type of the placeholders used for inputs.

  Returns:
    An optimized version of the input graph.
  """
    stripped_graph_def = strip_unused_lib.strip_unused(input_graph_def,
                                                       input_node_names,
                                                       output_node_names,
                                                       placeholder_type_enum)
    detrained_graph_def = graph_util.remove_training_nodes(stripped_graph_def)
    folded_graph_def = fold_batch_norms(detrained_graph_def)
    return folded_graph_def
def strip_and_freeze_model(saved_model,
                           output_path,
                           input_node_names=[],
                           output_node_names=[]):
    graph = tf.Graph()
    with tf.Session(graph=graph) as sess:
        print("loading model...")
        tf.saved_model.loader.load(sess, [tf.saved_model.SERVING], saved_model)

        print("stripping unused ops...")
        gdef = strip_unused_lib.strip_unused(
            input_graph_def=tf.get_default_graph().as_graph_def(),
            input_node_names=input_node_names,
            output_node_names=output_node_names,
            placeholder_type_enum=dtypes.float32.as_datatype_enum,
        )

        gdef = tf.graph_util.convert_variables_to_constants(
            sess, gdef, output_node_names)

        with gfile.GFile(output_path, "wb") as f:
            print("writing frozen model...")
            f.write(gdef.SerializeToString())
    return graph
with tf.compat.v1.gfile.GFile(mbv3_small_pb, "rb") as f: 
    graph_def = tf.compat.v1.GraphDef() 
    graph_def.ParseFromString(f.read()) 

with tf.Graph().as_default() as graph: 
    tf.import_graph_def(graph_def, 
    input_map=None, 
    return_elements=None, 
    name="" 
)

operations = graph.get_operations()
input_graph_node = operations[2].outputs[0].name[:-2]
output_graph_node = operations[-1].outputs[0].name[:-2]
reduced_graph = strip_unused_lib.strip_unused(input_graph_def = graph.as_graph_def(),
                                input_node_names=[input_graph_node],
                                output_node_names=[output_graph_node],
                                placeholder_type_enum=dtypes.float32.as_datatype_enum)

with tf.compat.v1.gfile.GFile("mbv3_small_cleaned.pb", "wb") as f:
    f.write(reduced_graph.SerializeToString())

#if we are converting from pb then we shouldn't strip the '/' from tensor names
mobilenetv3_small_mlmodel = tfcoreml.convert(
"mbv3_small_cleaned.pb",
output_feature_names = [output_graph_node],
input_name_shape_dict = {input_graph_node: [1, 224, 224, 3]},
image_input_names = [input_graph_node],
image_scale = 1/127.5,
red_bias = -1,
green_bias = -1,
blue_bias=-1,
示例#19
0
    def __init__(self, frozen_file, inputshape, in_nodes, dest_nodes):
        if LooseVersion(tensorflow.__version__) < LooseVersion('1.8.0'):
            raise ImportError(
                'Your TensorFlow version %s is outdated. '
                'MMdnn requires tensorflow>=1.8.0' % tensorflow.__version__)

        super(TensorflowParser2, self).__init__()

        self.weight_loaded = True
        # load model files into TensorFlow graph
        with open(frozen_file, 'rb') as f:
            serialized = f.read()
        tensorflow.reset_default_graph()
        original_gdef = tensorflow.GraphDef()

        original_gdef.ParseFromString(serialized)

        in_type_list = {}
        for n in original_gdef.node:
            if n.name in in_nodes:
                in_type_list[n.name] = n.attr['dtype'].type

        from tensorflow.python.tools import strip_unused_lib
        from tensorflow.python.framework import dtypes
        from tensorflow.python.platform import gfile
        original_gdef = strip_unused_lib.strip_unused(
                input_graph_def = original_gdef,
                input_node_names = in_nodes,
                output_node_names = dest_nodes,
                placeholder_type_enum = dtypes.float32.as_datatype_enum)
        # Save it to an output file
        tempdir = tempfile.mkdtemp()
        frozen_model_file = os.path.join(tempdir, 'frozen.pb')
        with gfile.GFile(frozen_model_file, "wb") as f:
            f.write(original_gdef.SerializeToString())
        with open(frozen_model_file, 'rb') as f:
            serialized = f.read()
        shutil.rmtree(tempdir)

        tensorflow.reset_default_graph()
        model = tensorflow.GraphDef()
        model.ParseFromString(serialized)

        output_shape_map = dict()
        input_shape_map = dict()
        dtype = tensorflow.float32

        with tensorflow.Graph().as_default() as g:
            input_map = {}
            for i in range(len(inputshape)):
                dtype = TensorflowParser2.tf_dtype_map[in_type_list[in_nodes[i]]]
                if in_type_list[in_nodes[i]] in (0, 1, 2):
                    x = tensorflow.placeholder(dtype, shape=[None] + inputshape[i])
                elif in_type_list[in_nodes[i]] in (3, 4, 5, 6, 7):
                    x = tensorflow.placeholder(dtype, shape=inputshape[i])
                elif in_type_list[in_nodes[i]] == 10:
                    x = tensorflow.placeholder(dtype)
                else:
                    raise NotImplementedError

                input_map[in_nodes[i] + ':0'] = x

            tensorflow.import_graph_def(model, name='', input_map=input_map)

        with tensorflow.Session(graph = g) as sess:

            tempdir = tempfile.mkdtemp()
            meta_graph_def = tensorflow.train.export_meta_graph(filename=os.path.join(tempdir, 'my-model.meta'))
            model = meta_graph_def.graph_def
            shutil.rmtree((tempdir))

        self.tf_graph = TensorflowGraph(model)
        self.tf_graph.build()
示例#20
0
    def __init__(self, frozen_file, inputshape, in_nodes, dest_nodes):
        if tensorflow.__version__ < '1.8.0':
            raise ImportError(
                'Your TensorFlow version %s is outdated. '
                'MMdnn requires tensorflow>=1.8.0' % tf.__version__)

        super(TensorflowParser2, self).__init__()

        self.weight_loaded = True
        # load model files into TensorFlow graph
        with open(frozen_file, 'rb') as f:
            serialized = f.read()
        tensorflow.reset_default_graph()
        original_gdef = tensorflow.GraphDef()

        original_gdef.ParseFromString(serialized)

        in_type_list = {}
        for n in original_gdef.node:
            if n.name in in_nodes:
                in_type_list[n.name] = n.attr['dtype'].type

        from tensorflow.python.tools import strip_unused_lib
        from tensorflow.python.framework import dtypes
        from tensorflow.python.platform import gfile
        original_gdef = strip_unused_lib.strip_unused(
                input_graph_def = original_gdef,
                input_node_names = in_nodes,
                output_node_names = dest_nodes,
                placeholder_type_enum = dtypes.float32.as_datatype_enum)
        # Save it to an output file
        frozen_model_file = './frozen.pb'
        with gfile.GFile(frozen_model_file, "wb") as f:
            f.write(original_gdef.SerializeToString())
        with open(frozen_model_file, 'rb') as f:
            serialized = f.read()
        tensorflow.reset_default_graph()
        model = tensorflow.GraphDef()
        model.ParseFromString(serialized)

        output_shape_map = dict()
        input_shape_map = dict()

        with tensorflow.Graph().as_default() as g:
            input_map = {}
            for i in range(len(inputshape)):
                if in_type_list[in_nodes[i]] == 1:
                    dtype = tensorflow.float32
                elif in_type_list[in_nodes[i]] == 3:
                    dtype = tensorflow.int32
                x = tensorflow.placeholder(dtype, shape = [None] + inputshape[i])
                input_map[in_nodes[i] + ':0'] = x

            tensorflow.import_graph_def(model, name='', input_map=input_map)

        # graph_options = tensorflow.GraphOptions(
        #     optimizer_options=tensorflow.OptimizerOptions(
        #         opt_level=tensorflow.OptimizerOptions.L0, do_function_inlining=False))

        # config = tensorflow.ConfigProto(graph_options=graph_options)
        # with tensorflow.Session(graph = g, config=config) as sess:
        with tensorflow.Session(graph = g) as sess:

            meta_graph_def = tensorflow.train.export_meta_graph(filename='./my-model.meta')
            model = meta_graph_def.graph_def


        self.tf_graph = TensorflowGraph(model)
        self.tf_graph.build()
示例#21
0
def convert_to_core_ml(exported_graph_path, model_structure, output_path):
    import tfcoreml

    if not os.path.exists('.tmp'):
        os.makedirs('.tmp')

    if os.path.exists(output_path) and os.path.isdir(output_path):
        shutil.rmtree(output_path)
    os.makedirs(output_path)

    if model_structure['type'] == ModelType.LOCALIZATION:
        frozen_model_file = '.tmp/tmp_frozen_graph.pb'
        with tf.Session(graph=tf.Graph()) as sess:
            saved_model_path = os.path.join(exported_graph_path,
                                            'saved_model/')
            tf.saved_model.loader.load(sess,
                                       [tf.saved_model.tag_constants.SERVING],
                                       saved_model_path)
            with gfile.GFile(frozen_model_file, 'wb') as f:
                output_graph_def = tf.graph_util.convert_variables_to_constants(
                    sess,
                    tf.get_default_graph().as_graph_def(),
                    model_structure['output_names'])

                input_node_names = ['Preprocessor/sub']
                output_node_names = ['concat', 'concat_1']
                stripped_graph_def = strip_unused_lib.strip_unused(
                    input_graph_def=output_graph_def,
                    input_node_names=input_node_names,
                    output_node_names=output_node_names,
                    placeholder_type_enum=dtypes.float32.as_datatype_enum)

                f.write(stripped_graph_def.SerializeToString())

        input_tensor_shapes = {'Preprocessor/sub:0': [1, 300, 300, 3]}

        input_tensor_names = ['Preprocessor/sub:0']
        output_tensor_names = ['concat:0', 'concat_1:0']

        tfcoreml.convert(tf_model_path=frozen_model_file,
                         mlmodel_path=os.path.join(output_path,
                                                   'Model.mlmodel'),
                         output_feature_names=output_tensor_names,
                         red_bias=-1,
                         green_bias=-1,
                         blue_bias=-1,
                         image_scale=1.0 / 128.0,
                         input_name_shape_dict=input_tensor_shapes,
                         image_input_names=input_tensor_names)

        json_labels = os.path.join(exported_graph_path, 'labels.json')
        with open(json_labels) as f:
            labels = json.load(f)
            with open(os.path.join(output_path, 'Labels.swift'),
                      'w') as swift_labels:
                swift_labels.write('//\n')
                swift_labels.write('//\tLabels.swift\n')
                swift_labels.write('//\tCloud Annotations\n')
                swift_labels.write('//\n')
                swift_labels.write('//\tGenerated on {}.\n'.format(
                    datetime.now().strftime("%m/%d/%y")))
                swift_labels.write('//\n\n')
                swift_labels.write('static let labels = [\n')

                for label in labels:
                    swift_labels.write('\t"{}"\n'.format(label))
                swift_labels.write(']\n')

        anchors = os.path.join(exported_graph_path, 'Anchors.swift')
        shutil.copy2(anchors, output_path)
    else:
        frozen_model_file = '.tmp/tmp_frozen_graph.pb'
        with tf.Session(graph=tf.Graph()) as sess:
            saved_model_path = os.path.join(exported_graph_path,
                                            'saved_model/')
            tf.saved_model.loader.load(sess,
                                       [tf.saved_model.tag_constants.SERVING],
                                       saved_model_path)
            with gfile.GFile(frozen_model_file, 'wb') as f:
                output_graph_def = tf.graph_util.convert_variables_to_constants(
                    sess,
                    tf.get_default_graph().as_graph_def(),
                    model_structure['output_names'])
                f.write(output_graph_def.SerializeToString())

        output_feature_names = [
            '{}:0'.format(name) for name in model_structure['output_names']
        ]

        class_labels = None
        json_labels = os.path.join(exported_graph_path, 'labels.json')
        text_labels = os.path.join(exported_graph_path, 'labels.txt')
        if os.path.isfile(text_labels):
            with open(text_labels, 'r') as f:
                class_labels = f.read()
                class_labels = list(
                    filter(bool,
                           [s.strip() for s in class_labels.splitlines()]))
        elif os.path.isfile(json_labels):
            with open(json_labels) as f:
                class_labels = json.load(f)

        tfcoreml.convert(
            tf_model_path=frozen_model_file,
            mlmodel_path=os.path.join(output_path, 'Model.mlmodel'),
            output_feature_names=output_feature_names,
            class_labels=class_labels,
            red_bias=-1,
            green_bias=-1,
            blue_bias=-1,
            image_scale=1.0 / 128.0,
            image_input_names='{}:0'.format(model_structure['input_name']))
示例#22
0
if __name__ == "__main__":

    input_pb_file = '/opt/python-project/PycharmProjects/detect-test/models/face_mobile_8_18_512590_graph.pb'
    output_pb_file = '/opt/python-project/PycharmProjects/detect-test/models/opt_512590.pb'

    input_node_names = ["image_tensor"]
    output_node_names = ['detection_boxes','detection_scores','detection_classes', 'num_detections']
    input_graph_def = graph_pb2.GraphDef()
    with open(input_pb_file, "rb") as f:
        input_graph_def.ParseFromString(f.read())

    output_graph_def = remove_assert_depend(input_graph_def)

    output_graph_def = strip_unused_lib.strip_unused(
        output_graph_def, input_node_names=input_node_names,
        output_node_names=output_node_names,
        placeholder_type_enum=dtypes.uint8.as_datatype_enum)

    output_graph_def = remove_identity(output_graph_def, output_node_names)

    skip_ops = []
    new_ops = []


    conv_names = ['FeatureExtractor/MobilenetV1/MobilenetV1/Conv2d_%s_pointwise/Conv2D'%i for i in range(1,14)] +\
                ['FeatureExtractor/MobilenetV1/MobilenetV1/Conv2d_%s_depthwise/depthwise'%i for i in range(1,14)]+\
                ["FeatureExtractor/MobilenetV1/MobilenetV1/Conv2d_0/Conv2D",
                 "FeatureExtractor/MobilenetV1/Conv2d_13_pointwise_1_Conv2d_2_1x1_256/Conv2D",
                 'FeatureExtractor/MobilenetV1/Conv2d_13_pointwise_2_Conv2d_2_3x3_s2_512/Conv2D',
                 'FeatureExtractor/MobilenetV1/Conv2d_13_pointwise_1_Conv2d_3_1x1_128/Conv2D',
                 'FeatureExtractor/MobilenetV1/Conv2d_13_pointwise_2_Conv2d_3_3x3_s2_256/Conv2D'
示例#23
0
    def __init__(self,
                 meta_file,
                 checkpoint_file,
                 dest_nodes,
                 inputShape=None,
                 in_nodes=None):
        super(TensorflowParser, self).__init__()

        # load model files into TensorFlow graph
        if meta_file:
            model = TensorflowParser._load_meta(meta_file)

        if checkpoint_file:
            self.ckpt_data = TensorflowParser._load_weights(checkpoint_file)
            self.weight_loaded = True

        # extract subgraph using in_nodes and dest_nodes
        if in_nodes != None and inputShape != None:
            from tensorflow.python.tools import strip_unused_lib
            from tensorflow.python.framework import dtypes
            from tensorflow.python.platform import gfile
            model = strip_unused_lib.strip_unused(
                input_graph_def=model,
                input_node_names=in_nodes,
                output_node_names=dest_nodes,
                placeholder_type_enum=dtypes.float32.as_datatype_enum)

            input_list = [None]
            for i in range(len(inputShape)):
                input_list.append(tensorflow.Dimension(inputShape[i]))
            tensor_input = tensorflow.TensorShape(input_list)
            # Build network graph
            self.tf_graph = TensorflowGraph(model)
            for node in self.tf_graph.model.node:
                if node.name in in_nodes:
                    node.attr['shape'].shape.CopyFrom(tensor_input.as_proto())
                    node.attr['_output_shapes'].list.shape.pop(
                    )  #unknown_rank pop
                    node.attr['_output_shapes'].list.shape.extend(
                        [tensor_input.as_proto()])

        # extract subgraph using dest_nodes
        elif dest_nodes != None:
            from tensorflow.python.framework.graph_util import extract_sub_graph
            model = extract_sub_graph(model, dest_nodes)
            self.tf_graph = TensorflowGraph(model)

        else:
            self.tf_graph = TensorflowGraph(model)

        # Graph Transform
        transforms = ["fold_constants(ignore_errors=true)"]

        #  Get input node name
        if not in_nodes:
            in_nodes = []
            for node in model.node:
                if node.op == 'Placeholder':
                    in_nodes.append(node.name)

        transformed_graph_def = TransformGraph(model, in_nodes, dest_nodes,
                                               transforms)
        in_type_list = {}
        in_shape_list = {}

        for n in transformed_graph_def.node:
            if n.name in in_nodes:
                in_type_list[n.name] = n.attr['dtype'].type
                in_node_shape = n.attr['shape'].shape
                in_node_shape_str = self._shapeToStr(in_node_shape)
                in_shape_list[n.name] = in_node_shape_str

        dtype = tensorflow.float32
        with tensorflow.Graph().as_default() as g:
            input_map = {}
            for in_node in in_nodes:
                if in_type_list[in_node] == 1 or in_type_list[in_node] == 0:
                    dtype = tensorflow.float32

                elif in_type_list[in_node] == 3:
                    dtype = tensorflow.int32

                elif in_type_list[in_node] == 10:
                    dtype = tensorflow.bool

                x = tensorflow.placeholder(dtype, shape=in_shape_list[in_node])
                input_map[in_node] = x

            tensorflow.import_graph_def(transformed_graph_def,
                                        name='',
                                        input_map=input_map)

        with tensorflow.Session(graph=g) as sess:
            tempdir = tempfile.mkdtemp()
            meta_graph_def = tensorflow.train.export_meta_graph(
                filename=os.path.join(tempdir, 'my-model.meta'))
            model = meta_graph_def.graph_def
            shutil.rmtree(tempdir)

        self.tf_graph = TensorflowGraph(model)
        self.tf_graph.build()

        process_graph(self.tf_graph, self.ckpt_data)
示例#24
0
    def __init__(self, frozen_file, inputshape, in_nodes, dest_nodes):
        super(TensorflowParser2, self).__init__()

        self.weight_loaded = True
        # load model files into TensorFlow graph
        with open(frozen_file, 'rb') as f:
            serialized = f.read()
        tensorflow.reset_default_graph()
        original_gdef = tensorflow.GraphDef()

        original_gdef.ParseFromString(serialized)
        # model = original_gdef
        from tensorflow.python.tools import strip_unused_lib
        from tensorflow.python.framework import dtypes
        from tensorflow.python.platform import gfile
        input_node_names = in_nodes.split(',')
        output_node_names = dest_nodes.split(',')
        gdef = strip_unused_lib.strip_unused(
            input_graph_def=original_gdef,
            input_node_names=input_node_names,
            output_node_names=output_node_names,
            placeholder_type_enum=dtypes.float32.as_datatype_enum)
        # Save it to an output file
        frozen_model_file = './frozen.pb'
        with gfile.GFile(frozen_model_file, "wb") as f:
            f.write(gdef.SerializeToString())
        with open(frozen_model_file, 'rb') as f:
            serialized = f.read()
        tensorflow.reset_default_graph()
        model = tensorflow.GraphDef()
        model.ParseFromString(serialized)

        output_shape_map = dict()
        input_shape_map = dict()
        with tensorflow.Graph().as_default() as g:
            tensorflow.import_graph_def(model, name='')
            ops = g.get_operations()
            N = len(ops)
            p = 0
            for i in range(N):

                for x in ops[i].inputs:
                    input_shape_map[x.name] = x.get_shape()
                for x in ops[i].outputs:
                    output_shape_map[x.name] = x.get_shape()

        # for pytest
        if type(inputshape[2]) == int:
            tensor_input = tensorflow.TensorShape([
                None,
                tensorflow.Dimension(inputshape[0]),
                tensorflow.Dimension(inputshape[1]),
                tensorflow.Dimension(inputshape[2])
            ])
            output_shape_map[input_node_names[0]] = tensor_input
        else:
            if len(inputshape[2].split(',')) == 2:
                param = inputshape[2].split(',')[1]
                tensor_input_2 = tensorflow.TensorShape(
                    [tensorflow.Dimension(param)])
                output_shape_map[input_node_names[1]] = tensor_input_2
                tensor_input = tensorflow.TensorShape([
                    None,
                    tensorflow.Dimension(inputshape[0]),
                    tensorflow.Dimension(inputshape[1]),
                    tensorflow.Dimension(inputshape[2].split(',')[0])
                ])
                output_shape_map[input_node_names[0]] = tensor_input
            else:
                tensor_input = tensorflow.TensorShape([
                    None,
                    tensorflow.Dimension(inputshape[0]),
                    tensorflow.Dimension(inputshape[1]),
                    tensorflow.Dimension(inputshape[2])
                ])
                output_shape_map[input_node_names[0]] = tensor_input

        # assert False
        self.tf_graph = TensorflowGraph(model)
        for node in self.tf_graph.model.node:
            if (node.name +
                    ':0') in output_shape_map and node.op != 'Placeholder':
                node.attr['_output_shapes'].list.shape.extend(
                    [output_shape_map[node.name + ':0'].as_proto()])

            if node.op == 'MirrorPad':
                node.attr['paddings'].list.shape.extend(
                    [input_shape_map[node.name + '/paddings:0'].as_proto()])

            if node.op == 'QuantizeV2':
                node.attr['shape'].list.shape.extend(
                    [input_shape_map[node.name + ':0'].as_proto()])

            if node.op == 'RequantizationRange':
                map_key = node.name.split(
                    'eightbit')[0] + "eightbit_quantized_conv:0"
                node.attr['shape'].list.shape.extend(
                    [input_shape_map[map_key].as_proto()])

            if node.op == 'Requantize':
                map_key = node.name.replace("requantize",
                                            "quantized_conv") + ":0"
                node.attr['shape'].list.shape.extend(
                    [input_shape_map[map_key].as_proto()])

            if node.name in input_node_names:
                if node.name in output_shape_map.keys():
                    node.attr['shape'].list.shape.extend(
                        [output_shape_map[node.name].as_proto()])
                    node.attr['_output_shapes'].list.shape.extend(
                        [output_shape_map[node.name].as_proto()])

        self.tf_graph.build()
示例#25
0
    def __init__(self,
                 pb_file,
                 dest_nodes,
                 input_shape=None,
                 in_nodes=None,
                 input_format="NCHW".encode()):
        with open(pb_file, 'rb') as f:
            serialized = f.read()
        tf.reset_default_graph()
        original_graph_def = tf.GraphDef()
        original_graph_def.ParseFromString(serialized)
        self.inputs = list()
        self.outputs = dest_nodes

        sess = tf.Session(graph=tf.get_default_graph())
        sess.run(tf.global_variables_initializer())
        self.infer = ModelInfer(sess)

        original_graph_def = strip_unused_lib.strip_unused(
            input_graph_def=original_graph_def,
            input_node_names=in_nodes,
            output_node_names=dest_nodes,
            placeholder_type_enum=dtypes.float32.as_datatype_enum)

        graph_def = tf.GraphDef()
        graph_def.ParseFromString(original_graph_def.SerializeToString())
        in_type_list = dict()
        for node in graph_def.node:
            if node.name in in_nodes:
                in_type_list[node.name] = node.attr['dtype'].type

        input_shape = list(input_shape)
        if not isinstance(input_shape[0], list):
            input_shape = [input_shape]

        input_map = dict()
        for i in range(len(input_shape)):
            if in_type_list[in_nodes[i]] == 1 or in_type_list[
                    in_nodes[i]] == 0:
                dtype = tf.float32
                x = tf.placeholder(dtype, shape=input_shape[i])
            elif in_type_list[in_nodes[i]] == 3:
                dtype = tf.int32
                x = tf.placehoder(dtype, shape=input_shape[i])
            else:
                raise Exception("Unexpected dtype for input, only support " \
                    "float32 and int32 now")
            input_map[in_nodes[i] + ":0"] = x
            self.inputs.append(x.name.split(':')[0])
            self.infer.gen_sample_data(x.name, input_shape[i])

        tf.import_graph_def(graph_def, name="", input_map=input_map)
        graph_def = tf.get_default_graph()._as_graph_def(add_shapes=True)[0]

        self.tf_graph = TensorflowGraph(graph_def)
        self.tf_graph.build(input_format)

        self.weights = dict()
        for node in graph_def.node:
            if node.op.lower() == "const":
                try:
                    node.attr['value'].tensor.tensor_content
                    weight = tensor_util.MakeNdarray(node.attr['value'].tensor)
                    self.weights[node.name] = weight
                except:
                    continue
示例#26
0
tf.reset_default_graph()
original_gdef = tf.GraphDef()
original_gdef.ParseFromString(serialized)

with tf.Graph().as_default() as g:
    tf.import_graph_def(original_gdef, name='')

# Strip unused subgraphs and save it as another frozen TF model
from tensorflow.python.tools import strip_unused_lib
from tensorflow.python.framework import dtypes
from tensorflow.python.platform import gfile
input_node_names = ['Preprocessor/sub']
output_node_names = ['concat', 'concat_1']
gdef = strip_unused_lib.strip_unused(
    input_graph_def=original_gdef,
    input_node_names=input_node_names,
    output_node_names=output_node_names,
    placeholder_type_enum=dtypes.float32.as_datatype_enum)
# Save the feature extractor to an output file
frozen_model_file = 'core_ml_conversion/ssd_mobilenet_feature_extractor.pb'
with gfile.GFile(frozen_model_file, "wb") as f:
    f.write(gdef.SerializeToString())

# Now we have a TF model ready to be converted to CoreML
import tfcoreml
# Supply a dictionary of input tensors' name and shape (with # batch axis)
input_tensor_shapes = {
    "Preprocessor/sub:0": [1, 300, 300, 3]
}  # batch size is 1
# Output CoreML model path
coreml_model_file = 'ssd_mobilenet.mlmodel'
示例#27
0
    def __init__(self, frozen_file, inputshape, in_nodes, dest_nodes):
        super(TensorflowParser2, self).__init__()

        self.weight_loaded = True
        # load model files into TensorFlow graph
        with open(frozen_file, 'rb') as f:
            serialized = f.read()
        tensorflow.reset_default_graph()
        original_gdef = tensorflow.GraphDef()

        original_gdef.ParseFromString(serialized)
        # model = original_gdef
        from tensorflow.python.tools import strip_unused_lib
        from tensorflow.python.framework import dtypes
        from tensorflow.python.platform import gfile
        input_node_names = in_nodes.split(',')
        output_node_names = dest_nodes.split(',')
        gdef = strip_unused_lib.strip_unused(
                input_graph_def = original_gdef,
                input_node_names = input_node_names,
                output_node_names = output_node_names,
                placeholder_type_enum = dtypes.float32.as_datatype_enum)
        # Save it to an output file
        frozen_model_file = './frozen.pb'
        with gfile.GFile(frozen_model_file, "wb") as f:
            f.write(gdef.SerializeToString())
        with open(frozen_model_file, 'rb') as f:
            serialized = f.read()
        tensorflow.reset_default_graph()
        model = tensorflow.GraphDef()
        model.ParseFromString(serialized)

        output_shape_map = dict()
        input_shape_map = dict()
        with tensorflow.Graph().as_default() as g:
            tensorflow.import_graph_def(original_gdef, name='')
            ops = g.get_operations()
            N = len(ops)
            p = 0
            for i in range(N):

                for x in ops[i].inputs:
                    input_shape_map[x.name] = x.get_shape()
                for x in ops[i].outputs:
                    output_shape_map[x.name] = x.get_shape()
        tensor_input = tensorflow.TensorShape([None, tensorflow.Dimension(inputshape[0]), tensorflow.Dimension(inputshape[1]), tensorflow.Dimension(inputshape[2])])
        output_shape_map[input_node_names[0]] = tensor_input
        self.tf_graph = TensorflowGraph(model)
        for node in self.tf_graph.model.node:
            if node.name == 'input' and node.op == 'Placeholder':
                node.attr['shape'].list.shape.extend([output_shape_map[node.name + ':0'].as_proto()])

            if (node.name + ':0') in output_shape_map:
                node.attr['_output_shapes'].list.shape.extend([output_shape_map[node.name + ':0'].as_proto()])

            if  node.op == 'MirrorPad':
                node.attr['paddings'].list.shape.extend([input_shape_map[node.name + '/paddings:0'].as_proto()])

            if  node.op == 'QuantizeV2':
                node.attr['shape'].list.shape.extend([input_shape_map[node.name + ':0'].as_proto()])

            if  node.op == 'RequantizationRange':
                map_key = node.name.split('eightbit')[0] + "eightbit_quantized_conv:0"
                node.attr['shape'].list.shape.extend([input_shape_map[map_key].as_proto()])

            if  node.op == 'Requantize':
                map_key = node.name.replace("requantize", "quantized_conv")+":0"
                node.attr['shape'].list.shape.extend([input_shape_map[map_key].as_proto()])

            if node.name == in_nodes:
                node.attr['shape'].list.shape.extend([output_shape_map[node.name].as_proto()])

        self.tf_graph.build()