示例#1
0
def main(unused_argv):
  tf.reset_default_graph()
  sess = tf.Session()
  lenet = LeNet(sess=sess, weights=None)

  lenet.train(learning_rate=0.001, training_epochs=40, batch_size=1000, keep_prob=0.7)
  lenet.evaluate(batch_size=1000, keep_prob=0.7)
示例#2
0
def clear_session():
    global _SESSION
    global _LEARNING_PHASE
    tf.reset_default_graph()
    reset_uids()
    _SESSION = None
    _LEARNING_PHASE = tf.placeholder(dtype='uint8', name='keras_learning_phase')
def run(data_seed, ema_decay_during_rampup, ema_decay_after_rampup,
        test_phase=False, n_labeled=250, n_extra_unlabeled=0, model_type='mean_teacher'):
    minibatch_size = 100
    hyperparams = model_hyperparameters(model_type, n_labeled, n_extra_unlabeled)

    tf.reset_default_graph()
    model = Model(RunContext(__file__, data_seed))

    svhn = SVHN(n_labeled=n_labeled,
                n_extra_unlabeled=n_extra_unlabeled,
                data_seed=data_seed,
                test_phase=test_phase)

    model['ema_consistency'] = hyperparams['ema_consistency']
    model['max_consistency_cost'] = hyperparams['max_consistency_cost']
    model['apply_consistency_to_labeled'] = hyperparams['apply_consistency_to_labeled']
    model['training_length'] = hyperparams['training_length']
    model['ema_decay_during_rampup'] = ema_decay_during_rampup
    model['ema_decay_after_rampup'] = ema_decay_after_rampup

    training_batches = minibatching.training_batches(svhn.training,
                                                     minibatch_size,
                                                     hyperparams['n_labeled_per_batch'])
    evaluation_batches_fn = minibatching.evaluation_epoch_generator(svhn.evaluation,
                                                                    minibatch_size)

    tensorboard_dir = model.save_tensorboard_graph()
    LOG.info("Saved tensorboard graph to %r", tensorboard_dir)

    model.train(training_batches, evaluation_batches_fn)
示例#4
0
    def __init__(self, params=params, dyn='FCC'):
        tf.reset_default_graph()

        data = self.sample_mog(params['batch_size'])

        noise = ds.Normal(tf.zeros(params['z_dim']), 
                          tf.ones(params['z_dim'])).sample(params['batch_size'])
        # Construct generator and discriminator nets
        with slim.arg_scope([slim.fully_connected], weights_initializer=tf.orthogonal_initializer(gain=1.4)):
            samples = self.generator(noise, output_dim=params['x_dim'])
            real_score = self.discriminator(data)
            fake_score = self.discriminator(samples, reuse=True)
            
        # Saddle objective    
        loss = tf.reduce_mean(
            tf.nn.sigmoid_cross_entropy_with_logits(logits=real_score, labels=tf.ones_like(real_score)) +
            tf.nn.sigmoid_cross_entropy_with_logits(logits=fake_score, labels=tf.zeros_like(fake_score)))

        gen_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "generator")
        disc_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "discriminator")
        gen_shapes = [tuple(v.get_shape().as_list()) for v in gen_vars]
        disc_shapes = [tuple(v.get_shape().as_list()) for v in disc_vars]

        # Generator gradient
        g_opt = tf.train.GradientDescentOptimizer(learning_rate=params['gen_learning_rate'])
        g_grads = g_opt.compute_gradients(-loss, var_list=gen_vars)

        # Discriminator gradient
        d_opt = tf.train.GradientDescentOptimizer(learning_rate=params['disc_learning_rate'])
        d_grads = d_opt.compute_gradients(loss, var_list=disc_vars)

        # Squared Norm of Gradient: d/dx 1/2||F||^2 = J^T F
        grads_norm_sep = [tf.reduce_sum(g[0]**2) for g in g_grads+d_grads]
        grads_norm = 0.5*tf.reduce_sum(grads_norm_sep)

        # Gradient of Squared Norm
        JTF = tf.gradients(grads_norm, xs=gen_vars+disc_vars)

        sess = tf.Session()
        sess.run(tf.global_variables_initializer())

        self.params = params
        self.data = data
        self.samples = samples
        self.gen_vars = gen_vars
        self.disc_vars = disc_vars
        self.gen_shapes = gen_shapes
        self.disc_shapes = disc_shapes
        self.Fg = g_grads
        self.Fd = d_grads
        self.JTF = JTF
        self.sess = sess
        self.findiff_step = params['findiff_step']
        self.gamma = params['gamma']
        self.dyn = dyn

        if dyn == 'FCC':
            self.F = self.FCC
        else:
            self.F = self._F
示例#5
0
 def setUp(self):
     tf.reset_default_graph()
     self.m = AddModel()
     self.m._compile()
     rng = np.random.RandomState(0)
     self.x = rng.randn(10, 20)
     self.y = rng.randn(10, 20)
  def generate_testdata(self):
    tf.reset_default_graph()
    sess = tf.Session()
    placeholder = tf.constant('I am deprecated.')

    # Previously, we had used a means of creating text summaries that used
    # plugin assets (which loaded JSON files containing runs and tags). The
    # plugin must continue to be able to load summaries of that format, so we
    # create a summary using that old plugin asset-based method here.
    plugin_asset_summary = tf.summary.tensor_summary('old_plugin_asset_summary',
                                                     placeholder)
    assets_directory = os.path.join(self.logdir, 'fry', 'plugins',
                                    'tensorboard_text')
    # Make the directory of assets if it does not exist.
    if not os.path.isdir(assets_directory):
      try:
        os.makedirs(assets_directory)
      except OSError as err:
        self.assertFail('Could not make assets directory %r: %r',
                        assets_directory, err)
    json_path = os.path.join(assets_directory, 'tensors.json')
    with open(json_path, 'w+') as tensors_json_file:
      # Write the op name to a JSON file that the text plugin later uses to
      # determine the tag names of tensors to fetch.
      tensors_json_file.write(json.dumps([plugin_asset_summary.op.name]))

    run_name = 'fry'
    subdir = os.path.join(self.logdir, run_name)
    writer = tf.summary.FileWriter(subdir)
    writer.add_graph(sess.graph)

    summ = sess.run(plugin_asset_summary)
    writer.add_summary(summ)
    writer.close()
  def generate_testdata(self, include_text=True, logdir=None):
    tf.reset_default_graph()
    sess = tf.Session()
    placeholder = tf.placeholder(tf.string)
    summary_tensor = tf.summary.text('message', placeholder)
    vector_summary = tf.summary.text('vector', placeholder)
    scalar_summary = tf.summary.scalar('twelve', tf.constant(12))

    run_names = ['fry', 'leela']
    for run_name in run_names:
      subdir = os.path.join(logdir or self.logdir, run_name)
      writer = tf.summary.FileWriter(subdir)
      writer.add_graph(sess.graph)

      step = 0
      for gem in GEMS:
        message = run_name + ' *loves* ' + gem
        feed_dict = {
            placeholder: message,
        }
        if include_text:
          summ = sess.run(summary_tensor, feed_dict=feed_dict)
          writer.add_summary(summ, global_step=step)
        step += 1

      vector_message = ['one', 'two', 'three', 'four']
      if include_text:
        summ = sess.run(vector_summary, feed_dict={placeholder: vector_message})
        writer.add_summary(summ)

      summ = sess.run(scalar_summary, feed_dict={placeholder: []})
      writer.add_summary(summ)

      writer.close()
示例#8
0
 def __init__(self,d_max_length=100,q_max_length=27,a_max_length=27,rnn_size=64,embedding_size=300,num_symbol=10000,atten_sim='nn',layer=2,atten_decoder=False,encode_type='cnn',d_max_sent=29):
     tf.reset_default_graph()
     self.d_max_sent = d_max_sent
     self.d_max_length = d_max_length
     self.q_max_length = q_max_length
     self.a_max_length = a_max_length
     self.rnn_size = rnn_size
     self.lr = 1e-2
     self.input_net = {}
     self.output_net = {}
     self.input_net['drop'] = tf.placeholder(tf.float32,[])
     self.cell = tf.nn.rnn_cell.GRUCell(self.rnn_size)
     self.cell = tf.nn.rnn_cell.DropoutWrapper(self.cell,self.input_net['drop'])
     self.fw_cell = tf.nn.rnn_cell.GRUCell(self.rnn_size)
     self.bw_cell = tf.nn.rnn_cell.GRUCell(self.rnn_size)
     self.result_cell = tf.nn.rnn_cell.GRUCell(self.rnn_size)
     self.result_cell = tf.nn.rnn_cell.DropoutWrapper(self.result_cell,self.input_net['drop'])
     #self.decoder_cell = tf.nn.rnn_cell.GRUCell(self.rnn_size)
     #self.decoder_cell = tf.nn.rnn_cell.DropoutWrapper(self.decoder_cell,self.input_net['drop'])
     self.embedding_size = embedding_size
     self.num_symbol = num_symbol
     self.output_net['loss'] = 0.
     #self.output_net['test_loss'] = 0.
     self.atten_sim = atten_sim
     self.atten_decoder = atten_decoder
     self.num_class = 2
     self.l2_loss = tf.constant(0.0)
     self.sess = tf.Session()
     self.encode_type = encode_type
def rename(checkpoint, replace_from, replace_to, add_prefix, dry_run, force_prefix=False):
    import tensorflow as tf
    tf.reset_default_graph()
    with tf.Session() as sess:
        for var_name, _ in tf.contrib.framework.list_variables(checkpoint):
            # Load the variable
            var = tf.contrib.framework.load_variable(checkpoint, var_name)

            # Set the new name
            new_name = var_name
            if None not in [replace_from, replace_to]:
                new_name = new_name.replace(replace_from, replace_to)
            if add_prefix:
                if force_prefix or not new_name.startswith(add_prefix):
                    # force prefix or add prefix if it does not exist yet
                    new_name = add_prefix + new_name

            if dry_run:
                print('%s would be renamed to %s.' % (var_name, new_name))
            else:
                if var_name == new_name:
                    print('No change for {}'.format(var_name))
                else:
                    print('Renaming %s to %s.' % (var_name, new_name))

                # Rename the variable
                tf.Variable(var, name=new_name)

        if not dry_run:
            # Save the variables
            saver = tf.train.Saver()
            sess.run(tf.global_variables_initializer())
            saver.save(sess, checkpoint)

    tf.reset_default_graph()
  def tfliteInvoke(self, graph, test_inputs, outputs):
    tf.reset_default_graph()
    # Turn the input into placeholder of shape 1
    tflite_input = tf.placeholder(
        "float", [1, self.time_steps, self.n_input], name="INPUT_IMAGE_LITE")
    tf.import_graph_def(graph, name="", input_map={"INPUT_IMAGE": tflite_input})
    with tf.Session() as sess:
      curr = sess.graph_def
      curr = convert_op_hints_to_stubs(graph_def=curr)

    curr = optimize_for_inference_lib.optimize_for_inference(
        curr, ["INPUT_IMAGE_LITE"], ["OUTPUT_CLASS"],
        [tf.float32.as_datatype_enum])

    tflite = tf.lite.toco_convert(
        curr, [tflite_input], [outputs], allow_custom_ops=False)

    interpreter = tf.lite.Interpreter(model_content=tflite)

    try:
      interpreter.allocate_tensors()
    except ValueError:
      assert False

    input_index = (interpreter.get_input_details()[0]["index"])
    interpreter.set_tensor(input_index, test_inputs)
    interpreter.invoke()
    output_index = (interpreter.get_output_details()[0]["index"])
    result = interpreter.get_tensor(output_index)
    # Reset all variables so it will not pollute other inferences.
    interpreter.reset_all_variables()
    return result
示例#11
0
def tf_baseline_conv2d():
    import tensorflow as tf
    import cntk.contrib.crosstalk.crosstalk_tensorflow as crtf
    ci = crtf.instance

    tf.reset_default_graph()

    x = tf.placeholder(tf.float32, [batch_size, num_chars, char_emb_dim])
    filter_bank = tf.get_variable("char_filter_bank",
                                  shape=[filter_width, char_emb_dim, num_filters],
                                  dtype=tf.float32)
    bias = tf.get_variable("char_filter_biases", shape=[num_filters], dtype=tf.float32)

    char_conv = tf.expand_dims(tf.transpose(tf.nn.conv1d(x, filter_bank, stride=1, padding='VALID') + bias, perm=[0,2,1]), -1)

    ci.watch(cstk.Conv2DArgs(W=crtf.find_trainable('char_filter_bank'), b=crtf.find_trainable('char_filter_biases')), 'conv2d', var_type=cstk.Conv2DAttr,
               attr=cstk.Conv2DAttr(filter_shape=(filter_width, char_emb_dim,), num_filters=num_filters))
    ci.watch(char_conv, 'conv2d_out', var_type=crtf.VariableType) # note the output is transposed to NCHW

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        data = {x:input_data}
        ci.set_workdir(workdir)
        ci.set_data(sess, data)
        ci.fetch('conv2d_out', save=True)
        ci.fetch('conv2d', save=True)
        ci.assign('conv2d', load=True)
        assert ci.compare('conv2d_out')
        ci.reset()
        sess.close()
示例#12
0
    def setUp(self):
        tf.reset_default_graph()

        class FlatModel(GPflow.model.Model):
            def build_likelihood(self):
                return 0
        self.m = FlatModel()
示例#13
0
    def setUp(self):
        tf.reset_default_graph()
        rng = np.random.RandomState(0)
        X = rng.rand(20,1)*10
        Y = np.sin(X) + 0.9 * np.cos(X*1.6) + rng.randn(*X.shape)* 0.8
        self.Xtest = rng.rand(10,1)*10

        m1 = GPflow.gpr.GPR(X, Y, kern=GPflow.kernels.RBF(1),\
                                mean_function=GPflow.mean_functions.Constant())                                
        m2 = GPflow.vgp.VGP(X, Y, GPflow.kernels.RBF(1), likelihood=GPflow.likelihoods.Gaussian(),\
                                mean_function=GPflow.mean_functions.Constant())
        m3 = GPflow.svgp.SVGP(X, Y, GPflow.kernels.RBF(1),
                              likelihood=GPflow.likelihoods.Gaussian(),
                              Z=X.copy(), q_diag=False,\
                              mean_function=GPflow.mean_functions.Constant())
        m3.Z.fixed = True
        m4 = GPflow.svgp.SVGP(X, Y, GPflow.kernels.RBF(1),
                              likelihood=GPflow.likelihoods.Gaussian(),
                              Z=X.copy(), q_diag=False, whiten=True,\
                              mean_function=GPflow.mean_functions.Constant())
        m4.Z.fixed=True
        m5 = GPflow.sgpr.SGPR(X, Y, GPflow.kernels.RBF(1),
                              Z=X.copy(),\
                              mean_function=GPflow.mean_functions.Constant())
                              
        m5.Z.fixed = True
        m6 = GPflow.sgpr.GPRFITC(X, Y, GPflow.kernels.RBF(1), Z=X.copy(),\
                              mean_function=GPflow.mean_functions.Constant())
        m6.Z.fixed = True
        self.models = [m1, m2, m3, m4, m5, m6]
        for m in self.models:
            m.optimize(display=False, max_iters=300)
            print('.') # stop travis timing out
示例#14
0
    def __init__(self, iWidth, iHeight, outputSize, trainData, trainLabels, testData, testLabels):
        tf.reset_default_graph()
        self.imageWidth = iWidth
        self.imageHeight = iHeight

        # the 1600 is the number of pixels in an image and the 10 is the number of images in a batch
        # ...aka for labels
        self.X = tf.placeholder(tf.float32, shape=[None, iHeight, iWidth, 1])
        self.Y = tf.placeholder(tf.float32, shape=[None, outputSize])

        self.trX = np.asarray(trainData).reshape(-1, iHeight, iWidth, 1)
        self.trY = trainLabels

        self.teX = np.asarray(testData).reshape(-1, iHeight, iWidth, 1)
        self.teY = testLabels

        w = self.init_weights([3, 3, 1, 32])  # 3x3x1 conv, 32 outputs
        w2 = self.init_weights([3, 3, 32, 64])  # 3x3x32 conv, 64 outputs
        w3 = self.init_weights([3, 3, 64, 128])  # 3x3x32 conv, 128 outputs
        w4 = self.init_weights([128 * 4 * 4, 625])  # FC 128 * 4 * 4 inputs, 625 outputs
        w_o = self.init_weights([625, outputSize])  # FC 625 inputs, 10 outputs (labels)

        self.p_keep_conv = tf.placeholder("float")
        self.p_keep_hidden = tf.placeholder("float")

        self.py_x = self.model(self.X, w, w2, w3, w4, w_o, self.p_keep_conv, self.p_keep_hidden)
        self.cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(self.py_x, self.Y))
        self.train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(self.cost)
        self.predict_op = tf.argmax(self.py_x, 1)

        self.loose_predict_op = self.py_x
示例#15
0
def eval_snapshot(envname, checkptfile, last_snapshot_idx, n_trajs, mode):
    import tensorflow as tf
    if mode == 'rltools':
        import h5py
        with h5py.File(checkptfile, 'r') as f:
            args = json.loads(f.attrs['args'])
    elif mode == 'rllab':
        params_file = os.path.join(checkptfile, 'params.json')
        with open(params_file, 'r') as df:
            args = json.load(df)

    env = envname2env(envname, args)
    bestidx = 0
    bestret = -np.inf
    bestevr = {}
    for idx in range((last_snapshot_idx - 10), (last_snapshot_idx + 1)):
        tf.reset_default_graph()
        minion = Evaluator(env, args, args['max_traj_len'] if mode == 'rltools' else
                           args['max_path_length'], n_trajs, False, mode)
        if mode == 'rltools':
            evr = minion(checkptfile, file_key='snapshots/iter%07d' % idx)
        elif mode == 'rllab':
            evr = minion(os.path.join(checkptfile, 'itr_{}.pkl'.format(idx)))

        if np.mean(evr['ret']) > bestret:
            bestret = np.mean(evr['ret'])
            bestevr = evr
            bestidx = idx
    return bestevr, bestidx
示例#16
0
文件: model.py 项目: kanoh-k/pred225
    def predict(self, n225_open, today=np.datetime64("today"), downloadData=False):
        if downloadData:
            self.stockdata.download()

        start_date = today - np.timedelta64(14, 'D')
        end_date = today
        predictors_tf, _, raw_values = self.create_data(start_date=start_date, end_date=end_date)
        raw_values= raw_values["N225_close"][~np.isnan(raw_values["N225_close"])]

        # df = self.stockdata.get_data_for_prediction(today)
        # Get last values
        predictors_tf = predictors_tf[-2:-1]
        raw_values = raw_values[-1:]
        predictors_tf["N225_jump"] = (n225_open / raw_values.values[0]) - 1
        # print("Yesterday's N225 close value was", raw_values.values[0])
        # print("Will use this value for N225_jump:", predictors_tf["N225_jump"].values[0])


        tf.reset_default_graph()
        with tf.Session() as sess:
            feature_data = tf.placeholder("float", [None, self.num_predictors])
            layers = [self.num_predictors] + self.hidden_layers + [self.num_classes]
            model = self.inference(feature_data, layers)

            # Restore parameters
            saver = tf.train.Saver()
            saver.restore(sess, self.model_filename)

            prediction = sess.run(tf.argmax(model, 1), feed_dict={feature_data: predictors_tf.values})

            pred2str = {0: "Up", 1: "Down", 2: "Same"}
            print("\n")
            print("Today's N225:", pred2str[prediction[0]])
            print("\n")
示例#17
0
def train(config, inputs, args):
    gan = setup_gan(config, inputs, args)
    sampler = lookup_sampler(args.sampler or TrainingVideoFrameSampler)(gan)
    samples = 0

    #metrics = [batch_accuracy(gan.inputs.x, gan.uniform_sample), batch_diversity(gan.uniform_sample)]
    #sum_metrics = [0 for metric in metrics]
    for i in range(args.steps):
        gan.step()

        if args.action == 'train' and i % args.save_every == 0 and i > 0:
            print("saving " + save_file)
            gan.save(save_file)

        if i % args.sample_every == 0:
            sample_file="samples/%06d.png" % (samples)
            samples += 1
            sampler.sample(sample_file, args.save_samples)

        #if i > args.steps * 9.0/10:
        #    for k, metric in enumerate(gan.session.run(metrics)):
        #        print("Metric "+str(k)+" "+str(metric))
        #        sum_metrics[k] += metric 

    tf.reset_default_graph()
    return []#sum_metrics
示例#18
0
  def testBasic(self):
    base_path = tf.test.test_src_dir_path(
        "contrib/session_bundle/example/half_plus_two/00000123")
    tf.reset_default_graph()
    sess, meta_graph_def = session_bundle.LoadSessionBundleFromPath(
        base_path, target="", config=tf.ConfigProto(device_count={"CPU": 2}))

    self.assertTrue(sess)
    asset_path = os.path.join(base_path, constants.ASSETS_DIRECTORY)
    with sess.as_default():
      path1, path2 = sess.run(["filename1:0", "filename2:0"])
      self.assertEqual(
          compat.as_bytes(os.path.join(asset_path, "hello1.txt")), path1)
      self.assertEqual(
          compat.as_bytes(os.path.join(asset_path, "hello2.txt")), path2)

      collection_def = meta_graph_def.collection_def

      signatures_any = collection_def[constants.SIGNATURES_KEY].any_list.value
      self.assertEquals(len(signatures_any), 1)

      signatures = manifest_pb2.Signatures()
      signatures_any[0].Unpack(signatures)
      default_signature = signatures.default_signature
      input_name = default_signature.regression_signature.input.tensor_name
      output_name = default_signature.regression_signature.output.tensor_name
      y = sess.run([output_name], {input_name: np.array([[0], [1], [2], [3]])})
      # The operation is y = 0.5 * x + 2
      self.assertEqual(y[0][0], 2)
      self.assertEqual(y[0][1], 2.5)
      self.assertEqual(y[0][2], 3)
      self.assertEqual(y[0][3], 3.5)
示例#19
0
文件: model.py 项目: kanoh-k/pred225
    def train(self, eval_on_test=False):
        """ Train model and save it to file.

        Train model with given hidden layers. Training data is created
        by prepare_training_data(), which must be called before this function.
        """
        tf.reset_default_graph()
        with tf.Session() as sess:
            feature_data = tf.placeholder("float", [None, self.num_predictors])
            labels = tf.placeholder("float", [None, self.num_classes])

            layers = [self.num_predictors] + self.hidden_layers + [self.num_classes]
            model = self.inference(feature_data, layers)
            cost, cost_summary_op = self.loss(model, labels)
            training_op = self.training(cost, learning_rate=0.0001)

            correct_prediction = tf.equal(tf.argmax(model, 1), tf.argmax(labels, 1))
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

            # Merge all variable summaries and save the results to log file
            # summary_op = tf.merge_all_summaries()
            accuracy_op_train = tf.scalar_summary("Accuracy on Train", accuracy)
            summary_op_train = tf.merge_summary([cost_summary_op, accuracy_op_train])
            if eval_on_test:
                accuracy_op_test = tf.scalar_summary("Accuracy on Test", accuracy)
                summary_op_test = tf.merge_summary([accuracy_op_test])

            summary_writer = tf.train.SummaryWriter(self.log_dir + self.model_name, sess.graph)

            train_dict = {
                feature_data: self.training_predictors_tf.values,
                labels: self.training_classes_tf.values.reshape(len(self.training_classes_tf.values), self.num_classes)}

            if eval_on_test:
                test_dict = {
                    feature_data: self.test_predictors_tf.values,
                    labels: self.test_classes_tf.values.reshape(len(self.test_classes_tf.values), self.num_classes)}

            init = tf.initialize_all_variables()
            sess.run(init)

            for i in range(1, self.max_iteration):
                sess.run(training_op, feed_dict=train_dict)

                # Write summary to log
                if i % 100 == 0:
                    summary_str = sess.run(summary_op_train, feed_dict=train_dict)
                    summary_writer.add_summary(summary_str, i)
                    if eval_on_test:
                        summary_str = sess.run(summary_op_test, feed_dict=test_dict)
                        summary_writer.add_summary(summary_str, i)
                    summary_writer.flush()

                # Print current accuracy to console
                if i%5000 == 0:
                    print (i, sess.run(accuracy, feed_dict=train_dict))

            # Save trained parameters
            saver = tf.train.Saver()
            saver.save(sess, self.model_filename)
def demonstrate_loading_weights_into_different_scope():
    print("="*60 + " Demonstrate loading weights saved in scopeQ, into variables now in scopeA")
    tf.reset_default_graph()
    with tf.variable_scope("scopeA") as scope:
        m1a = Model1()
        print ("=" * 60 + " Trying to load model1 weights from scopeQ into scopeA")
        m1a.model.load("model1_scopeQ.tfl", variable_name_map=("scopeA", "scopeQ"), verbose=True)
示例#21
0
def train(model_path, num_classes, data):
    # setup training label
    train_image = []
    train_label = []

    for (path, k) in data:
        train_image.append(__read(path))
        train_label.append(__label(num_classes, k))

    # convert to numpy
    train_image = np.asarray(train_image)
    train_label = np.asarray(train_label)

    with tf.Graph().as_default():
        with tf.variable_scope('ejs') as scope:
            reuse = True
            # create expression
            acc = __accuracy(num_classes)

        saver = tf.train.Saver()

        # run training batch
        sess = __train(train_image, train_label, acc)

    # save trained model
    saver.save(sess, model_path)
    tf.reset_default_graph()
    sess.close()
示例#22
0
  def generate_run(self, run_name, include_graph):
    """Create a run with a text summary, metadata, and optionally a graph."""
    tf.reset_default_graph()
    k1 = tf.constant(math.pi, name='k1')
    k2 = tf.constant(math.e, name='k2')
    result = (k1 ** k2) - k1
    expected = tf.constant(20.0, name='expected')
    error = tf.abs(result - expected, name='error')
    message_prefix_value = 'error ' * 1000
    true_length = len(message_prefix_value)
    assert true_length > self._MESSAGE_PREFIX_LENGTH_LOWER_BOUND, true_length
    message_prefix = tf.constant(message_prefix_value, name='message_prefix')
    error_message = tf.string_join([message_prefix,
                                    tf.as_string(error, name='error_string')],
                                   name='error_message')
    summary_message = tf.summary.text('summary_message', error_message)

    sess = tf.Session()
    writer = tf.summary.FileWriter(os.path.join(self.logdir, run_name))
    if include_graph:
      writer.add_graph(sess.graph)
    options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()
    s = sess.run(summary_message, options=options, run_metadata=run_metadata)
    writer.add_summary(s)
    writer.add_run_metadata(run_metadata, self._METADATA_TAG)
    writer.close()
def fit_em(X, initial_mus, max_steps, tol, min_covar=MIN_COVAR_DEFAULT):
    tf.reset_default_graph()
    
    N, D = X.shape
    K, Dmu = initial_mus.shape
    assert D == Dmu
        
    mus0 = initial_mus
    sigmas0 = np.tile(np.var(X, axis=0), (K, 1))
    alphas0 = np.ones(K) / K
    X = tf.constant(X)
    
    mus, sigmas, alphas = (tf.Variable(x, dtype='float64') for x in [mus0, sigmas0, alphas0])
    
    all_ll, resp = estep(X, mus, sigmas, alphas)
    cmus, csigmas, calphas = mstep(X, resp, min_covar=min_covar)
    update_mus_step = tf.assign(mus, cmus)
    update_sigmas_step = tf.assign(sigmas, csigmas)
    update_alphas_step = tf.assign(alphas, calphas)     
    
    init_op = tf.initialize_all_variables()
    ll = prev_ll = -np.inf

    with tf.Session() as sess:
        sess.run(init_op)
        for i in range(max_steps):
            ll = sess.run(tf.reduce_mean(all_ll))
            sess.run((update_mus_step, update_sigmas_step, update_alphas_step))
            #print('EM iteration', i, 'log likelihood', ll)
            if abs(ll - prev_ll) < tol:
                break
            prev_ll = ll
        m, s, a = sess.run((mus, sigmas, alphas))
    
    return ll, m, s, a
def run(data_seed, dropout, input_noise, augmentation,
        test_phase=False, n_labeled=250, n_extra_unlabeled=0, model_type='mean_teacher'):
    minibatch_size = 100
    hyperparams = model_hyperparameters(model_type, n_labeled, n_extra_unlabeled)

    tf.reset_default_graph()
    model = Model(RunContext(__file__, data_seed))

    svhn = SVHN(n_labeled=n_labeled,
                n_extra_unlabeled=n_extra_unlabeled,
                data_seed=data_seed,
                test_phase=test_phase)

    model['ema_consistency'] = hyperparams['ema_consistency']
    model['max_consistency_cost'] = hyperparams['max_consistency_cost']
    model['apply_consistency_to_labeled'] = hyperparams['apply_consistency_to_labeled']
    model['training_length'] = hyperparams['training_length']
    model['student_dropout_probability'] = dropout
    model['teacher_dropout_probability'] = dropout
    model['input_noise'] = input_noise
    model['translate'] = augmentation

    training_batches = minibatching.training_batches(svhn.training,
                                                     minibatch_size,
                                                     hyperparams['n_labeled_per_batch'])
    evaluation_batches_fn = minibatching.evaluation_epoch_generator(svhn.evaluation,
                                                                    minibatch_size)

    tensorboard_dir = model.save_tensorboard_graph()
    LOG.info("Saved tensorboard graph to %r", tensorboard_dir)

    model.train(training_batches, evaluation_batches_fn)
def run(test_phase, data_seed, n_labeled, training_length, rampdown_length):
    minibatch_size = 100
    n_labeled_per_batch = 100

    tf.reset_default_graph()
    model = Model(RunContext(__file__, data_seed))

    cifar = SVHN(n_labeled=n_labeled,
                 data_seed=data_seed,
                 test_phase=test_phase)

    model['ema_consistency'] = True
    model['max_consistency_cost'] = 0.0
    model['apply_consistency_to_labeled'] = False
    model['rampdown_length'] = rampdown_length
    model['training_length'] = training_length

    # Turn off augmentation
    model['translate'] = False
    model['flip_horizontally'] = False

    training_batches = minibatching.training_batches(cifar.training,
                                                     minibatch_size,
                                                     n_labeled_per_batch)
    evaluation_batches_fn = minibatching.evaluation_epoch_generator(cifar.evaluation,
                                                                    minibatch_size)

    tensorboard_dir = model.save_tensorboard_graph()
    LOG.info("Saved tensorboard graph to %r", tensorboard_dir)

    model.train(training_batches, evaluation_batches_fn)
  def saveAndRestoreModel(self, fw_lstm_layer, bw_lstm_layer, sess, saver,
                          is_dynamic_rnn):
    """Saves and restores the model to mimic the most common use case.

    Args:
      fw_lstm_layer: The forward lstm layer either a single lstm cell or a multi
        lstm cell.
      bw_lstm_layer: The backward lstm layer either a single lstm cell or a
        multi lstm cell.
      sess: Old session.
      saver: saver created by tf.compat.v1.train.Saver()
      is_dynamic_rnn: use dynamic_rnn or not.

    Returns:
      A tuple containing:

      - Input tensor of the restored model.
      - Prediction tensor of the restored model.
      - Output tensor, which is the softwmax result of the prediction tensor.
      - new session of the restored model.

    """
    model_dir = tempfile.mkdtemp()
    saver.save(sess, model_dir)

    # Reset the graph.
    tf.reset_default_graph()
    x, prediction, output_class = self.buildModel(fw_lstm_layer, bw_lstm_layer,
                                                  is_dynamic_rnn)

    new_sess = tf.Session(config=CONFIG)
    saver = tf.train.Saver()
    saver.restore(new_sess, model_dir)
    return x, prediction, output_class, new_sess
  def testBasic(self):
    base_path = tf.test.test_src_dir_path(
        "contrib/session_bundle/example/half_plus_two/00000123")
    tf.reset_default_graph()
    sess, meta_graph_def = session_bundle.load_session_bundle_from_path(
        base_path, target="", config=tf.ConfigProto(device_count={"CPU": 2}))

    self.assertTrue(sess)
    asset_path = os.path.join(base_path, constants.ASSETS_DIRECTORY)
    with sess.as_default():
      path1, path2 = sess.run(["filename1:0", "filename2:0"])
      self.assertEqual(
          compat.as_bytes(os.path.join(asset_path, "hello1.txt")), path1)
      self.assertEqual(
          compat.as_bytes(os.path.join(asset_path, "hello2.txt")), path2)

      collection_def = meta_graph_def.collection_def

      signatures_any = collection_def[constants.SIGNATURES_KEY].any_list.value
      self.assertEquals(len(signatures_any), 1)

      signatures = manifest_pb2.Signatures()
      signatures_any[0].Unpack(signatures)
      self._checkRegressionSignature(signatures, sess)
      self._checkNamedSigantures(signatures, sess)
示例#28
0
    def build(self,  configuration):
        tf.reset_default_graph()

        # --- specify input data
        self.inputs = tf.placeholder(tf.float32, [None, 28, 28, 1], name='x')
        self.labels = tf.placeholder(tf.float32, [None, 10], name='labels')
        # tf.summary.image('input', inputs, 3)
        # TODO add name scopes and summaries

        # --- specify layers of network
        # TODO try another strides for conv layer
        # TODO try to get rid of pooling layer
        conv1 = tf.layers.conv2d(inputs=self.inputs, filters=configuration[0], kernel_size=[5, 5], padding="same",
                                 activation=tf.nn.relu, name='conv1')
        pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2, name='pool1')
        conv2 = tf.layers.conv2d(inputs=pool1, filters=configuration[1], kernel_size=[5, 5], padding="same",
                                 activation=tf.nn.relu, name='conv2')
        pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2, name='pool2')
        flattened = tf.reshape(pool2, [-1, 7 * 7 * configuration[1]])
        dense = tf.layers.dense(inputs=flattened, units=1024, activation=tf.nn.relu, name='fc')
        logits = tf.layers.dense(inputs=dense, units=10, name='output')

        # --- specify cost function and how training is performed
        with tf.name_scope("train"):
            cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=self.labels, logits=logits)
            self.train_step = tf.train.AdamOptimizer(0.015).minimize(cross_entropy)

        # --- specify function to calculate accuracy
        with tf.name_scope("accuracy"):
            correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(self.labels, 1))
            self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
            tf.summary.scalar("accuracy", self.accuracy)

        self.summary = tf.summary.merge_all()
示例#29
0
 def setUp(self):
     tf.reset_default_graph()
     self.x = tf.placeholder(tf.float64)
     self.x_np = np.random.randn(10)
     self.session = tf.Session()
     self.transforms = [C() for C in GPflow.transforms.Transform.__subclasses__()]
     self.transforms.append(GPflow.transforms.Logistic(7.3, 19.4))
示例#30
0
def trainfold_fine(conffile,curfold,curgpu,batch_size,confname='conf'):

    imp_mod = importlib.import_module(conffile)
    conf = imp_mod.__dict__[confname]
    if batch_size>0:
        conf.batch_size = batch_size

    ##

    ext = '_fold_{}'.format(curfold)
    conf.valdatafilename = conf.valdatafilename + ext
    conf.trainfilename = conf.trainfilename + ext
    conf.valfilename = conf.valfilename + ext
    conf.fulltrainfilename += ext
    conf.baseoutname = conf.baseoutname + ext
    conf.mrfoutname += ext
    conf.fineoutname += ext
    conf.baseckptname += ext
    conf.mrfckptname += ext
    conf.fineckptname += ext
    conf.basedataname += ext
    conf.finedataname += ext
    conf.mrfdataname += ext

    os.environ['CUDA_VISIBLE_DEVICES'] = curgpu
    tf.reset_default_graph()
    self = PoseTrain.PoseTrain(conf)
    self.fineTrain(restore=True,trainPhase=True,trainType=0)
示例#31
0
    def DetectionImage(self):
        image_xy = [self.label.x0, self.label.y0, self.label.x1, self.label.y1]
        #print(image_xy)
        id = self.imgName[-10:-4]
        id_i = []
        fg = 0
        for i in id:
            if i != '0' or fg:
                id_i.append(i)
                fg = 1
        id_i = [str(a) for a in id_i]
        image_id = int(''.join(id_i))
        print(self.imgName)

        img = cv2.imread(self.imgName)
        jpg = img[:, :, [2, 1, 0]]
        #im = jpg[self.label.y0:self.label.y1, self.label.x0:self.label.x1]
        #cv2.namedWindow("Image")
        #cv2.imshow("Image", im)
        #cv2.waitKey(0)
        #cv2.destroyAllWindows()
        im_orig = jpg.astype(np.float32, copy=True)
        im_orig -= np.array([[[102.9801, 115.9465, 122.7717]]])
        im_shape = im_orig.shape
        #print(im_shape[0], im_shape[1])
        im_orig = im_orig.reshape(1, im_shape[0], im_shape[1], 3)
        self.im_orig = im_orig
        self.im_shape = im_shape
        self.jpg = jpg

        #im_orig = jpg.astype(np.float32, copy=True)
        #im_orig -= np.array([[[102.9801, 115.9465, 122.7717]]])
        #im_shape = im_orig.shape
        #print(im_shape[0], im_shape[1])
        #im_orig = im_orig.reshape(1, im_shape[0], im_shape[1], 3)

        Test_RCNN = pickle.load(open(
            cfg.DATA_DIR + '/' +
            'Test_Faster_RCNN_R-50-PFN_2x_VCOCO_with_pose.pkl', "rb"),
                                encoding='latin1')
        prior_mask = pickle.load(open(cfg.DATA_DIR + '/' + 'prior_mask.pkl',
                                      "rb"),
                                 encoding='latin1')
        Action_dic = json.load(open(cfg.DATA_DIR + '/' + 'action_index.json'))
        Action_dic_inv = {y: x for x, y in Action_dic.items()}

        vcocoeval = VCOCOeval(
            cfg.DATA_DIR + '/' + 'v-coco/data/vcoco/vcoco_test.json',
            cfg.DATA_DIR + '/' + 'v-coco/data/instances_vcoco_all_2014.json',
            cfg.DATA_DIR + '/' + 'v-coco/data/splits/vcoco_test.ids')

        p_weight = 'E:/projects/Transferable-Interactiveness-Network/Weights/TIN_VCOCO/HOI_iter_6000.ckpt'
        p_output_file = 'E:/projects/Transferable-Interactiveness-Network/-Results/TIN_VCOCO_0.6_0.4_GUItest_naked.pkl'  # 最佳预测试结果
        # init session
        tf.reset_default_graph()
        tfconfig = tf.ConfigProto(allow_soft_placement=True)
        tfconfig.gpu_options.allow_growth = True
        sess = tf.Session(config=tfconfig)
        net = ResNet50()
        net.create_architecture(False)
        saver = tf.train.Saver()
        saver.restore(sess, p_weight)
        p_detection = []

        if self.f_HO:
            im_detect_GUI_H(sess, net, im_orig, im_shape, image_id, image_xy,
                            Test_RCNN, prior_mask, Action_dic_inv, 0.4, 0.6, 3,
                            p_detection)
        else:
            im_detect_GUI_O(sess, net, im_orig, im_shape, image_id, image_xy,
                            Test_RCNN, prior_mask, Action_dic_inv, 0.4, 0.6, 3,
                            p_detection)
        # print(detection)
        pickle.dump(p_detection, open(p_output_file, "wb"))
        sess.close()
        # 为了得到单个图像的模型预测,对之后的图像test的NIS进行参考

        # weight = 'E:/projects/Transferable-Interactiveness-Network/Weights/TIN_VCOCO/HOI_iter_6000.ckpt'

        weight = 'E:/projects/Transferable-Interactiveness-Network/Weights/TIN_VCOCO_Mytest/HOI_iter_10.ckpt'
        # init session
        tf.reset_default_graph()
        tfconfig = tf.ConfigProto(allow_soft_placement=True)
        tfconfig.gpu_options.allow_growth = True
        sess = tf.Session(config=tfconfig)
        net = ResNet50()
        net.create_architecture(False)
        saver = tf.train.Saver()
        saver.restore(sess, weight)
        detection = []
        if self.f_HO:
            im_detect_GUI_H(sess, net, im_orig, im_shape, image_id, image_xy,
                            Test_RCNN, prior_mask, Action_dic_inv, 0.4, 0.6, 3,
                            detection)
        else:
            im_detect_GUI_O(sess, net, im_orig, im_shape, image_id, image_xy,
                            Test_RCNN, prior_mask, Action_dic_inv, 0.4, 0.6, 3,
                            detection)
        # print(detection)
        # pickle.dump(detection, open(output_file, "wb"))
        sess.close()

        #test_result = detection
        #input_D = cfg.ROOT_DIR + '/-Results/TIN_VCOCO_0.6_0.4_GUItest_naked.pkl'#模型预测,对NIS进行参考
        #with open(input_D, 'rb') as f:
        #    test_D = pickle.load(f, encoding='latin1')
        output_file = 'E:/projects/Transferable-Interactiveness-Network/-Results/p_nis_detection_TIN_VCOCO_0.6_0.4_GUItest_naked.pkl'
        generate_result = generate_pkl_GUI(p_detection,
                                           detection,
                                           prior_mask,
                                           Action_dic_inv, (6, 6, 7, 0),
                                           prior_flag=3)
        with open(output_file, 'wb') as f:
            pickle.dump(generate_result, f)

        cc = plt.get_cmap('hsv', lut=6)
        height, width, nbands = jpg.shape

        figsize = width / float(80), height / float(80)
        fig = plt.figure(figsize=figsize)
        ax = fig.add_axes([0, 0, 1, 1])
        ax.axis('off')
        ax.imshow(jpg, interpolation='nearest')

        HO_dic = {}
        HO_set = set()
        count = 0

        if self.f_HO:  #框选human,标出object
            for ele in generate_result:
                if (ele['image_id'] == image_id):
                    action_count = -1

                    for action_key, action_value in ele.items():
                        if (action_key.split('_')[
                                -1] != 'agent') and action_key != 'image_id' and action_key != 'person_box' \
                                and action_key != 'object_class' and action_key != 'object_box' \
                                and action_key != 'binary_score'and action_key != 'O_det' and action_key != 'H_det':
                            # print(action_value[:4])
                            # if ele['object_box'] :
                            if (not np.isnan(action_value[0])) and (
                                    action_value[4] > 0.01):
                                # print(action_value[:5])
                                O_box = action_value[:4]
                                H_box = ele['person_box']

                                action_count += 1

                                if tuple(O_box) not in HO_set:
                                    HO_dic[tuple(O_box)] = count
                                    HO_set.add(tuple(O_box))
                                    count += 1
                                if tuple(H_box) not in HO_set:
                                    HO_dic[tuple(H_box)] = count
                                    HO_set.add(tuple(H_box))
                                    count += 1
                                '''ax.add_patch(
                                    plt.Rectangle((H_box[0], H_box[1] ),
                                                  H_box[2] - H_box[0],
                                                  H_box[3] - H_box[1], fill=False,
                                                  edgecolor=cc(HO_dic[tuple(H_box)])[:3], linewidth=5)
                                )
                                ax.add_patch(
                                    plt.Rectangle((image_xy[0], image_xy[1]),
                                                  image_xy[2] - image_xy[0],
                                                  image_xy[3] - image_xy[1], fill=False,
                                                  edgecolor=cc(HO_dic[tuple(H_box)])[:3], linewidth=2)
                                )'''
                                text = action_key.split(
                                    '_')[0] + ', ' + "%.2f" % action_value[4]

                                ax.text(H_box[0] + 10,
                                        H_box[1] + 25 + action_count * 35,
                                        text,
                                        bbox=dict(facecolor=cc(
                                            HO_dic[tuple(O_box)])[:3],
                                                  alpha=0.5),
                                        fontsize=16,
                                        color='white')

                                ax.add_patch(
                                    plt.Rectangle(
                                        (O_box[0], O_box[1]),
                                        O_box[2] - O_box[0],
                                        O_box[3] - O_box[1],
                                        fill=False,
                                        edgecolor=cc(HO_dic[tuple(O_box)])[:3],
                                        linewidth=2))
                                ax.set(xlim=[0, width],
                                       ylim=[height, 0],
                                       aspect=1)
        else:  #框选object,标出human
            for ele in generate_result:
                if (ele['image_id'] == image_id):
                    action_count = -1

                    for action_key, action_value in ele.items():
                        if (action_key.split('_')[
                                -1] != 'agent') and action_key != 'image_id' and action_key != 'person_box' \
                                and action_key != 'object_class' and action_key != 'object_box' \
                                and action_key != 'binary_score'and action_key != 'O_det' and action_key != 'H_det':
                            # print(action_value[:4])
                            # if ele['object_box'] :
                            if (not np.isnan(action_value[0])) and (
                                    action_value[4] > 0.01):
                                # print(action_value[:5])
                                O_box = action_value[:4]
                                H_box = ele['person_box']

                                action_count += 1

                                if tuple(O_box) not in HO_set:
                                    HO_dic[tuple(O_box)] = count
                                    HO_set.add(tuple(O_box))
                                    count += 1
                                if tuple(H_box) not in HO_set:
                                    HO_dic[tuple(H_box)] = count
                                    HO_set.add(tuple(H_box))
                                    count += 1

                                ax.add_patch(
                                    plt.Rectangle(
                                        (H_box[0], H_box[1]),
                                        H_box[2] - H_box[0],
                                        H_box[3] - H_box[1],
                                        fill=False,
                                        edgecolor=cc(HO_dic[tuple(H_box)])[:3],
                                        linewidth=3))
                                '''ax.add_patch(
                                    plt.Rectangle((image_xy[0], image_xy[1]),
                                                  image_xy[2] - image_xy[0],
                                                  image_xy[3] - image_xy[1], fill=False,
                                                  edgecolor=cc(HO_dic[tuple(H_box)])[:3], linewidth=2)
                                )'''
                                text = action_key.split(
                                    '_')[0] + ', ' + "%.2f" % action_value[4]

                                ax.text(H_box[0] + 10,
                                        H_box[1] + 25 + action_count * 35,
                                        text,
                                        bbox=dict(facecolor=cc(
                                            HO_dic[tuple(O_box)])[:3],
                                                  alpha=0.5),
                                        fontsize=16,
                                        color='white')
                                '''ax.add_patch(
                                    plt.Rectangle((O_box[0], O_box[1]),
                                                  O_box[2] - O_box[0],
                                                  O_box[3] - O_box[1], fill=False,
                                                  edgecolor=cc(HO_dic[tuple(O_box)])[:3], linewidth=2)
                                )'''
                                ax.set(xlim=[0, width],
                                       ylim=[height, 0],
                                       aspect=1)
        plt.show()
        plt.pause(40)
        plt.close()
示例#32
0
 def tearDown(self):
     tf.reset_default_graph()
示例#33
0
        def __graph__():

            # placeholders
            tf.reset_default_graph()
            #  encoder inputs : list of indices of length xseq_len
            self.enc_ip = [
                tf.placeholder(shape=[
                    None,
                ],
                               dtype=tf.int64,
                               name='ei_{}'.format(t)) for t in range(xseq_len)
            ]

            #  labels that represent the real outputs
            self.labels = [
                tf.placeholder(shape=[
                    None,
                ],
                               dtype=tf.int64,
                               name='ei_{}'.format(t)) for t in range(yseq_len)
            ]

            #  decoder inputs : 'GO' + [ y1, y2, ... y_t-1 ]
            self.dec_ip = [
                tf.zeros_like(self.enc_ip[0], dtype=tf.int64, name='GO')
            ] + self.labels[:-1]

            # Basic LSTM cell wrapped in Dropout Wrapper
            self.keep_prob = tf.placeholder(tf.float32)
            # define the basic cell
            basic_cell = tf.contrib.rnn.DropoutWrapper(
                tf.contrib.rnn.BasicLSTMCell(emb_dim, state_is_tuple=True),
                output_keep_prob=self.keep_prob)
            # stack cells together : n layered model
            stacked_lstm = tf.contrib.rnn.MultiRNNCell([basic_cell] *
                                                       num_layers,
                                                       state_is_tuple=True)

            # for parameter sharing between training model
            #  and testing model
            with tf.variable_scope('decoder') as scope:
                # build the seq2seq model
                #  inputs : encoder, decoder inputs, LSTM cell type, vocabulary sizes, embedding dimensions
                self.decode_outputs, self.decode_states = tf.contrib.legacy_seq2seq.embedding_rnn_seq2seq(
                    self.enc_ip, self.dec_ip, stacked_lstm, xvocab_size,
                    yvocab_size, emb_dim)
                # share parameters
                scope.reuse_variables()
                # testing model, where output of previous timestep is fed as input
                #  to the next timestep
                self.decode_outputs_test, self.decode_states_test = tf.contrib.legacy_seq2seq.embedding_rnn_seq2seq(
                    self.enc_ip,
                    self.dec_ip,
                    stacked_lstm,
                    xvocab_size,
                    yvocab_size,
                    emb_dim,
                    feed_previous=True)

            # now, for training,
            #  build loss function

            # weighted loss
            #  TODO : add parameter hint
            loss_weights = [
                tf.ones_like(label, dtype=tf.float32) for label in self.labels
            ]
            self.loss = tf.contrib.legacy_seq2seq.sequence_loss(
                self.decode_outputs, self.labels, loss_weights, yvocab_size)
            # train op to minimize the loss
            self.train_op = tf.train.AdamOptimizer(learning_rate=lr).minimize(
                self.loss)
of human presence and movement detection. We use a single-LSTM layer in this network.

The classes of the classification problem are
1. Empty room
2. Stationary human present
3. Moving human present. 

Navod Suraweera, Macquarie University
"""

import tensorflow as tf
import numpy as np
from datetime import datetime
import scipy.io as sio
#
tf.reset_default_graph()
startTime = datetime.now()

#The number of classes in the classifier
num_classes = 3

#Data input as a .mat file
mat_train = sio.loadmat('RNN_FFT_12ele_train.mat')
mat_test = sio.loadmat('RNN_FFT_12ele_test.mat')
"""
The length of the sequence input into the RNN in-terms of the number of time steps (T)
For each T value we generate test and train data batches, which are contained 
in the input data mat file.
"""
#The number of time steps (T) in the RNN.
time_steps = int(mat_train['time_steps'])
示例#35
0
def DRL_implementation(filename,globali):
    try:

        #filename = 'benchmark_reduced/test_benchmark_5.gr'
        # Filename corresponds to benchmark to route
        # filename = '3d.txt'
        # filename = '8by8small.gr'  # 8-by-8 10 nets toy sample
        # filename = '8by8simplee.gr'  # 8-by-8 10 nets toy sample
        # filename = 'adaptecSmall.gr'
        # filename = '4by4small.gr'  # 3-by-3 nets toy sample
    #    filename = '4by4simple.gr'  # 3-by-3 nets toy sample
        # filename = 'adaptec1.capo70.2d.35.50.90.gr'

        # # Getting Net Info
        with open('myResults.txt', 'a') as myFile:
            myFile.write(filename)

        grid_info = init.read(filename)
        gridParameters = init.gridParameters(grid_info)

        # # GridGraph
        graphcase = graph.GridGraph(init.gridParameters(grid_info))
        capacity = graphcase.generate_capacity()
        # print ('capacity before route: ',capacity.shape)

        gridX,gridY,gridZ = graphcase.generate_grid()

        # Real Router for Multiple Net
        # Note: pinCoord input as absolute length coordinates
        gridGraphSearch = twoPinASearch.AStarSearchGraph(gridParameters, capacity)

        # Sort net
        halfWireLength = init.VisualGraph(init.gridParameters(grid_info)).bounding_length()
    #    print('Half Wire Length:',halfWireLength)

        sortedHalfWireLength = sorted(halfWireLength.items(),key=operator.itemgetter(1),reverse=True) # Large2Small
        # sortedHalfWireLength = sorted(halfWireLength.items(),key=operator.itemgetter(1),reverse=False) # Small2Large

        netSort = []
        for i in range(gridParameters['numNet']):
            order = int(sortedHalfWireLength[i][0])
            netSort.append(order)
        # random order the nets
        # print('netSort Before',netSort)
        # random.shuffle(netSort)
        # print('netSort After',netSort)

        routeListMerged = []
        routeListNotMerged = []

        #print('gridParameters',gridParameters)
        # Getting two pin list combo (For RL)
        twopinListCombo = []
        twopinListComboCleared = []
        for i in range(len(init.gridParameters(grid_info)['netInfo'])):
            netNum = i
            netPinList = []; netPinCoord = []
            for j in range(0, gridParameters['netInfo'][netNum]['numPins']):
                pin = tuple([int((gridParameters['netInfo'][netNum][str(j+1)][0]-gridParameters['Origin'][0])/gridParameters['tileWidth']),
                                 int((gridParameters['netInfo'][netNum][str(j+1)][1]-gridParameters['Origin'][1])/gridParameters['tileHeight']),
                                 int(gridParameters['netInfo'][netNum][str(j+1)][2]),
                                  int(gridParameters['netInfo'][netNum][str(j+1)][0]),
                                  int(gridParameters['netInfo'][netNum][str(j+1)][1])])
                if pin[0:3] in netPinCoord:
                    continue
                else:
                    netPinList.append(pin)
                    netPinCoord.append(pin[0:3])
            twoPinList = []
            for i in range(len(netPinList)-1):
                pinStart = netPinList[i]
                pinEnd = netPinList[i+1]
                twoPinList.append([pinStart,pinEnd])

            twoPinListVanilla = twoPinList

            # Insert Tree method to decompose two pin problems here
            twoPinList = tree.generateMST(twoPinList)
    #        print('Two pin list after:', twoPinList, '\n')

            # Remove pin pairs that are in the same grid 
            nullPairList = []
            for i in range(len(twoPinListVanilla)):
                if twoPinListVanilla[i][0][:3] == twoPinListVanilla[i][1][:3]:
                    nullPairList.append(twoPinListVanilla[i])
            for i in range(len(nullPairList)):
                twoPinListVanilla.remove(nullPairList[i])

            # Remove pin pairs that are in the same grid 
            nullPairList = []
            for i in range(len(twoPinList)):
                if twoPinList[i][0][:3] == twoPinList[i][1][:3]:
                    nullPairList.append(twoPinList[i])
            for i in range(len(nullPairList)):
                twoPinList.reomove(nullPairList[i])

            # Key: use original sequence of two pin pairs
            twopinListComboCleared.append(twoPinListVanilla)

        # print('twopinListComboCleared',twopinListComboCleared)
        twoPinEachNetClear = []
        for i in twopinListComboCleared:
            num = 0
            for j in i:
                num = num + 1
            twoPinEachNetClear.append(num)

        # print('twoPinEachNetClear',twoPinEachNetClear)

        for i in range(len(init.gridParameters(grid_info)['netInfo'])):
            netNum = int(sortedHalfWireLength[i][0]) # i 
            # Sort the pins by a heuristic such as Min Spanning Tree or Rectilinear Steiner Tree
            netPinList = []
            netPinCoord = []
            for j in range(0, gridParameters['netInfo'][netNum]['numPins']):
                pin = tuple([int((gridParameters['netInfo'][netNum][str(j+1)][0]-gridParameters['Origin'][0])/gridParameters['tileWidth']),
                                 int((gridParameters['netInfo'][netNum][str(j+1)][1]-gridParameters['Origin'][1])/gridParameters['tileHeight']),
                                 int(gridParameters['netInfo'][netNum][str(j+1)][2]),
                                  int(gridParameters['netInfo'][netNum][str(j+1)][0]),
                                  int(gridParameters['netInfo'][netNum][str(j+1)][1])])
                if pin[0:3] in netPinCoord:
                    continue
                else:
                    netPinList.append(pin)
                    netPinCoord.append(pin[0:3])

            twoPinList = []
            for i in range(len(netPinList)-1):
                pinStart = netPinList[i]
                pinEnd = netPinList[i+1]
                twoPinList.append([pinStart,pinEnd])

            # Insert Tree method to decompose two pin problems here
            twoPinList = tree.generateMST(twoPinList)
    #        print('Two pin list after:', twoPinList, '\n')

            # Remove pin pairs that are in the same grid 
            nullPairList = []
            for i in range(len(twoPinList)):
                if twoPinList[i][0][:3] == twoPinList[i][1][:3]:
                    nullPairList.append(twoPinList[i])

            for i in range(len(nullPairList)):
                twoPinList.reomove(nullPairList[i])

            # Key: Use MST sorted pin pair sequence under half wirelength sorted nets
            twopinListCombo.append(twoPinList)

        # print('twopinListCombo',twopinListCombo)
        ######################################################################################
        # for i in range(1):
        for i in range(len(init.gridParameters(grid_info)['netInfo'])):

            # Determine nets to wire based on sorted nets (stored in list sortedHalfWireLength)
    #        print('*********************')
            # print('Routing net No.',init.gridParameters(grid_info)['netInfo'][int(sortedHalfWireLength[i][0])]['netName'])
            # (above output is to get actual netName)
    #        print('Routing net No.',sortedHalfWireLength[i][0])

            netNum = int(sortedHalfWireLength[i][0])

            # Sort the pins by a heuristic such as Min Spanning Tree or Rectilinear Steiner Tree
            netPinList = []
            netPinCoord = []
            for j in range(0, gridParameters['netInfo'][netNum]['numPins']):
                pin = tuple([int((gridParameters['netInfo'][netNum][str(j+1)][0]-gridParameters['Origin'][0])/gridParameters['tileWidth']),
                                 int((gridParameters['netInfo'][netNum][str(j+1)][1]-gridParameters['Origin'][1])/gridParameters['tileHeight']),
                                 int(gridParameters['netInfo'][netNum][str(j+1)][2]),
                                  int(gridParameters['netInfo'][netNum][str(j+1)][0]),
                                  int(gridParameters['netInfo'][netNum][str(j+1)][1])])
                if pin[0:3] in netPinCoord:
                    continue
                else:
                    netPinList.append(pin)
                    netPinCoord.append(pin[0:3])
            twoPinList = []
            for i in range(len(netPinList)-1):
                pinStart = netPinList[i]
                pinEnd = netPinList[i+1]
                twoPinList.append([pinStart,pinEnd])

            # Insert Tree method to decompose two pin problems here
            twoPinList = tree.generateMST(twoPinList)

            # Remove pin pairs that are in the same grid 
            nullPairList = []
            for i in range(len(twoPinList)):
                if twoPinList[i][0][:3] == twoPinList[i][1][:3]:
                    nullPairList.append(twoPinList[i])
            for i in range(len(nullPairList)):
                twoPinList.reomove(nullPairList[i])

            i = 1
            routeListSingleNet = []
            for twoPinPair in twoPinList:
                pinStart = twoPinPair[0]; pinEnd =  twoPinPair[1]
                route, cost = twoPinASearch.AStarSearchRouter(pinStart, pinEnd, gridGraphSearch)
                routeListSingleNet.append(route)
                i += 1

            mergedrouteListSingleNet = []

            for list in routeListSingleNet:
                # if len(routeListSingleNet[0]) == 2:
                #     mergedrouteListSingleNet.append(list[0])
                #     mergedrouteListSingleNet.append(list[1])
                # else:
                for loc in list:
                        if loc not in mergedrouteListSingleNet:
                            mergedrouteListSingleNet.append(loc)

            routeListMerged.append(mergedrouteListSingleNet)
            routeListNotMerged.append(routeListSingleNet)

            # Update capacity and grid graph after routing one pin pair
            # # WARNING: there are some bugs in capacity update
            # # # print(route)
            # capacity = graph.updateCapacity(capacity, mergedrouteListSingleNet)
            # gridGraph = twoPinASearch.AStarSearchGraph(gridParameters, capacity)

        # print('\nRoute List Merged:',routeListMerged)
        
        ##########################################################################'''
        twopinlist_nonet = []
        for net in twopinListCombo:
        # for net in twopinListComboCleared:
            for pinpair in net:
                twopinlist_nonet.append(pinpair)

        # Get two pin numbers
        twoPinNum = 0
        twoPinNumEachNet = []
        for i in range(len(init.gridParameters(grid_info)['netInfo'])):
            netNum = int(sortedHalfWireLength[i][0]) # i
            twoPinNum = twoPinNum + (init.gridParameters(grid_info)['netInfo'][netNum]['numPins'] - 1)
            twoPinNumEachNet.append(init.gridParameters(grid_info)['netInfo'][netNum]['numPins'] - 1)

        # print('twoPinNumEachNet debug1: ',twoPinNumEachNet)
        # print('twopinlist_nonet',twopinlist_nonet)


        # DRL Module from here
        graphcase.max_step = 50 #20
        graphcase.twopin_combo = twopinlist_nonet
        # print('twopinlist_nonet',twopinlist_nonet)
        graphcase.net_pair = twoPinNumEachNet

        # Setting the session to allow growth, so it doesn't allocate all GPU memory.
        gpu_ops = tf.GPUOptions(allow_growth=True)
        config = tf.ConfigProto(gpu_options=gpu_ops)
        sess = tf.Session(config=config)

        # Setting this as the default tensorflow session.
        keras.backend.tensorflow_backend.set_session(sess)

        # You want to create an instance of the DQN_Agent class here, and then train / test it.
        model_path = '../model/'
        data_path = '../data/'
        environment_name = 'grid'
        if not os.path.exists(model_path):
            os.makedirs(model_path)
        if not os.path.exists(data_path):
            os.makedirs(data_path)
        agent = DQN_Implementation.DQN_Agent(environment_name, sess, graphcase)   
             
        # Burn in with search 
        # Get a list of (observation, action, reward, observation_next, is_terminal) 
        # with Route List Merged (solution given with A*search plus tree)
        graphcaseBurnIn = graph.GridGraph(init.gridParameters(grid_info))
        graphcaseBurnIn.max_step = 10000

        observationCombo = []; actionCombo = []; rewardCombo = []
        observation_nextCombo = []; is_terminalCombo = []
        
        for enumerator in range(300):
            for i in range(gridParameters['numNet']):
                goal = routeListMerged[i][-1]
                graphcaseBurnIn.goal_state = (goal[3],goal[4],goal[2],goal[0],goal[1])
                for j in range(len(routeListMerged[i])-1):
                    position = routeListMerged[i][j]
                    nextposition = routeListMerged[i][j+1]
                    graphcaseBurnIn.current_state = (position[3],position[4],
                        position[2],position[0],position[1])
                    # print(graphcaseBurnIn.state2obsv())
                    observationCombo.append(graphcaseBurnIn.state2obsv())
                    action = graph.get_action(position,nextposition)
                    # print('action',action)
                    actionCombo.append(action)

                    graphcaseBurnIn.step(action)
                    rewardCombo.append(graphcaseBurnIn.instantreward)
                    # graphcaseBurnIn.current_state = (nextposition[3],nextposition[4],
                    #     nextposition[2],nextposition[0],nextposition[1])
                    observation_nextCombo.append(graphcaseBurnIn.state2obsv())
                    is_terminalCombo.append(False)

                is_terminalCombo[-1] = True

    # if testing using training function, comment burn_in

        agent.replay = DQN_Implementation.Replay_Memory() #Remove memeory of previous training

        agent.burn_in_memory_search(observationCombo,actionCombo,rewardCombo,
            observation_nextCombo,is_terminalCombo)

        twoPinNum = 0
        twoPinNumEachNet = []
        for i in range(len(init.gridParameters(grid_info)['netInfo'])):
            twoPinNum = twoPinNum + (init.gridParameters(grid_info)['netInfo'][i]['numPins'] - 1)
            twoPinNumEachNet.append(init.gridParameters(grid_info)['netInfo'][i]['numPins'] - 1)
        
        # print ("Two pin num: ",len(graphcase.twopin_combo))
        twoPinNum = len(graphcase.twopin_combo)
        twoPinNumEachNet  = graphcase.twopin_combo

        # Training DRL
        savepath = model_path #32by32simple_model_train"
        # model_file = "../32by32simple_model_train/model_24000.ckpt"

        # print ('twoPinNumEachNet debug2',twoPinNumEachNet)

    #         graphcase.max_step = 50 #20
    # graphcase.twopin_combo = twopinlist_nonet
    # graphcase.net_pair = twoPinNumEachNet

        # Reinitialze grid graph parameters before training on new benchmarks
        agent.gridParameters = gridParameters
        agent.gridgraph.max_step = 50 #100
        agent.goal_state = None; agent.init_state = None
        agent.gridgraph.capacity = capacity
        agent.gridgraph.route  = []
        agent.gridgraph.twopin_combo = twopinlist_nonet
        agent.gridgraph.twopin_pt = 0
        agent.gridgraph.twopin_rdn = None
        agent.gridgraph.reward = 0.0
        agent.gridgraph.instantreward = 0.0
        agent.gridgraph.best_reward = 0.0
        agent.gridgraph.best_route = []
        agent.gridgraph.route_combo = []
        agent.gridgraph.net_pair = twoPinEachNetClear
        agent.gridgraph.instantrewardcombo = []
        agent.gridgraph.net_ind = 0
        agent.gridgraph.pair_ind = 0
        agent.gridgraph.posTwoPinNum = 0
        agent.gridgraph.passby = np.zeros_like(capacity)
        agent.previous_action = -1

        # print('twopinlist_nonet',twopinlist_nonet)
        episodes = agent.max_episodes
        # print('twopinlist_nonet',twopinlist_nonet)
        solution_combo_filled,reward_plot_combo,reward_plot_combo_pure,solutionTwoPin,posTwoPinNum \
        = agent.train(twoPinNum,twoPinEachNetClear,netSort,savepath,gridParameters,sortedHalfWireLength,globali,model_file=None)
       
        # pkl.dump(solution_combo_filled,fileObject)
        # fileObject.close()
        twoPinListPlotRavel = []
        for i in range(len(twopinlist_nonet)):
                twoPinListPlotRavel.append(twopinlist_nonet[i][0])
                twoPinListPlotRavel.append(twopinlist_nonet[i][1])


        # Generate output file for DRL solver
        # print('posTwoPinNum',posTwoPinNum)
        # print('len(graphcase.twopin_combo)',len(graphcase.twopin_combo))


        if posTwoPinNum >= len(graphcase.twopin_combo): #twoPinNum:
            # Plot reward and save reward data
            n = np.linspace(1,episodes,len(reward_plot_combo))
            '''##########################################################
            plt.figure()
            plt.plot(n,reward_plot_combo)
            plt.xlabel('episodes')
            plt.ylabel('reward')
            plt.savefig('DRLRewardPlot/test_benchmark_{dumpBench}.DRLRewardPlot.jpg'.format(dumpBench=globali+1))
            # plt.show()
            plt.close()

            n = np.linspace(1,episodes,len(reward_plot_combo_pure))
            plt.figure()
            plt.plot(n,reward_plot_combo_pure)
            plt.xlabel('episodes')
            plt.ylabel('reward')
            plt.savefig('DRLRewardPlot/test_benchmark_{dumpBench}.DRLRewardPlotPure.jpg'.format(dumpBench=globali+1))
            plt.close()'''
            
            

            #filenameplot = '%s.rewardData' % filename
            filenameplot = 'DRLRewardPlot/rewardData_test_benchmark_{dumpBench}.txt'.format(dumpBench=globali+1)
            np.save(filenameplot,reward_plot_combo)

            # dump solution of DRL
            f = open('solutionsDRL/test_benchmark_{dumpBench}.gr.DRLsolution'.format(dumpBench=globali+1), 'w+')
            # for i in range(1):
            twoPinSolutionPointer = 0
            routeListMerged = solution_combo_filled
            # print('solution_combo_filled',solution_combo_filled)
            for i in range(gridParameters['numNet']):
                singleNetRouteCache = []
                singleNetRouteCacheSmall = []
                indicator = i
                netNum = int(sortedHalfWireLength[i][0]) # i 
                
                i = netNum

                value = '{netName} {netID} {cost}\n'.format(netName=gridParameters['netInfo'][indicator]['netName'],
                                                      netID = gridParameters['netInfo'][indicator]['netID'],
                                                      cost = 0) #max(0,len(routeListMerged[indicator])-1))
                f.write(value)
                for j in range(len(routeListMerged[indicator])):
                    for  k in range(len(routeListMerged[indicator][j])-1):

                        a = routeListMerged[indicator][j][k]
                        b = routeListMerged[indicator][j][k+1]

                        if (a[3],a[4],a[2],b[3],b[4],b[2]) not in singleNetRouteCache:  
                        # and (b[3],b[4],b[2]) not in singleNetRouteCacheSmall:
                            singleNetRouteCache.append((a[3],a[4],a[2],b[3],b[4],b[2]))
                            singleNetRouteCache.append((b[3],b[4],b[2],a[3],a[4],a[2]))
                            # singleNetRouteCacheSmall.append((a[3],a[4],a[2]))
                            # singleNetRouteCacheSmall.append((b[3],b[4],b[2]))

                            diff = [abs(a[2]-b[2]),abs(a[3]-b[3]),abs(a[4]-b[4])]
                            if diff[1] > 2 or diff[2] > 2:
                                continue
                            elif diff[1] == 2 or diff[2] == 2:
                                continue
                            elif diff[0] == 0 and diff[1] == 0 and diff[2] == 0:
                                continue
                            elif diff[0] + diff[1] + diff[2] >= 2:
                                continue
                            else:
                                value = '({},{},{})-({},{},{})\n'.format(int(a[0]),int(a[1]),a[2],int(b[0]),int(b[1]),b[2])
                                f.write(value)
                    twoPinSolutionPointer = twoPinSolutionPointer + 1
                f.write('!\n')
            f.close()


            '''##########################################################################
            
            
            # Plot of routing for multilple net (RL solution) 3d
            fig = plt.figure()
            ax = fig.add_subplot(111, projection='3d')
            ax.set_zlim(0.75,2.25)
            ax.set_xticks([])
            ax.set_yticks([])
            ax.set_zticks([])
            x_meshP = np.linspace(0,gridParameters['gridSize'][0]-1,200)
            y_meshP = np.linspace(0,gridParameters['gridSize'][1]-1,200)
            z_meshP = np.linspace(1,2,200)
            x_mesh,y_mesh = np.meshgrid(x_meshP,y_meshP)
            z_mesh = np.ones_like(x_mesh)
            ax.plot_surface(x_mesh,y_mesh,z_mesh,alpha=0.3,color='r')
            ax.plot_surface(x_mesh,y_mesh,2*z_mesh,alpha=0.3,color='r')
            plt.axis('off')
            plt.close()
            # for i in twoPinListPlotRavel:
            #     x = [coord[0] for coord in twoPinListPlotRavel]
            #     y = [coord[1] for coord in twoPinListPlotRavel]
            #     z = [coord[2] for coord in twoPinListPlotRavel]
            #     ax.scatter(x,y,z,s=25,facecolors='none', edgecolors='k')

            # Visualize solution
            for twoPinRoute in solutionTwoPin:
                x = []; y = []; z = []
                for i in range(len(twoPinRoute)):
                    # print(routeList[i])
                    # diff = [abs(routeList[i][2]-routeList[i+1][2]),
                    # abs(routeList[i][3]-routeList[i+1][3]),
                    # abs(routeList[i][4]-routeList[i+1][4])]
                    # if diff[1] > 2 or diff[2] > 2:
                    #     continue
                    # elif diff[1] == 2 or diff[2] == 2:
                    #     # print('Alert')
                    #     continue
                    # elif diff[0] == 0 and diff[1] == 0 and diff[2] == 0:
                    #     continue
                    # elif diff[0] + diff[1] + diff[2] >= 2:
                    #     continue
                    # else:
                    x.append(twoPinRoute[i][3])
                    y.append(twoPinRoute[i][4])
                    z.append(twoPinRoute[i][2])
                    ax.plot(x,y,z,linewidth=2.5)
            
            plt.xlim([0, gridParameters['gridSize'][0]-1])
            plt.ylim([0, gridParameters['gridSize'][1]-1])
            plt.savefig('DRLRewardPlot/DRLRoutingVisualize_test_benchmark_{dumpBench}.png'.format(dumpBench=globali+1))
            # plt.show()
            plt.close()

            # Visualize results on 2D 
            fig = plt.figure()
            # ax = fig.add_subplot(111, projection='3d')
            # ax.set_zlim(-0.5,2.5)
            ax = fig.add_subplot(111)
            
            ##########################################################################'''

            #
            for routeList in routeListNotMerged:
                for route in routeList:
                    num_points = len(route)
                    for i in range(num_points-1):
                        pair_x = [route[i][3], route[i+1][3]]
                        pair_y = [route[i][4], route[i+1][4]]
                        pair_z = [route[i][2], route[i+1][2]]
                        '''if pair_z[0] ==pair_z[1] == 1:
                            ax.plot(pair_x, pair_y, color='blue', linewidth=2.5)
                        if pair_z[0] ==pair_z[1] == 2:
                            ax.plot(pair_x, pair_y, color='red', linewidth=2.5)'''
            '''ax.axis('scaled')
            ax.invert_yaxis()
            plt.xlim([-0.1, gridParameters['gridSize'][0]-0.9])
            plt.ylim([-0.1, gridParameters['gridSize'][1]-0.9])
            plt.axis('off')
            # for i in twoPinListPlotRavel:
            #     x = [coord[0] for coord in twoPinListPlotRavel]
            #     y = [coord[1] for coord in twoPinListPlotRavel]
            #     ax.scatter(x,y,s=40, facecolors='none', edgecolors='k')
            plt.savefig('DRLRewardPlot/DRLRoutingVisualize_test_benchmark2d_{dumpBench}.png'.format(dumpBench=globali+1))
            plt.close()'''
            fileNAME = './solutionsDRL/test_benchmark_{dumpBench}.gr.DRLsolution'.format(dumpBench=globali + 1)
            command = "perl eval2008.pl test_benchmark_{dumpBench}.gr".format(dumpBench=globali + 1) + fileNAME
            os.system(command)

        else:
            print("DRL fails with existing max episodes! : (")
    except IndexError:
        print ("Invalid Benchmarks! ")
        with open('myResults.txt', 'a') as myFile:
            myFile.write('\n*********Invalid Benchmarks! **********\n')
        agent.sess.close()
        tf.reset_default_graph()
        # graphcase.posTwoPinNum = 0
    return
示例#36
0
        output_row = out_empty[:]
        output_row[labels.index(docs_y[x])] = 1

        training.append(bag)
        output.append(output_row)

    training = numpy.array(training)
    output = numpy.array(output)

    with open("data.pickle", "wb") as f:
        pickle.dump((words, labels, training, output), f)

#interpreting model

tensorflow.reset_default_graph()

net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)

model = tflearn.DNN(net)

try:
    model.load("model.tflearn")
except:
    model.fit(training, output, n_epoch=2000, batch_size=8, show_metric=True)
    model.save("model.tflearn")
def learn_model_vel(params,trainX1,trainX2,trainY,testX1,testX2,testY):
    '''
    learn_model(params,trainX1,trainX2,trainY,testX1,testX2,testY):
        Use stochastic gradient descent to learn parameters in model. 
    
    Inputs:
    params: dictionary with:
        dt: time step
        reg: l2 regularization strength
        n_coefficients: number of fourier coefficients to use to represent 
        coupling function
        learning_rate: learning rate for gradient descent
        n_epochs: number of epochs for training 
        batch_size: batch size for training
        n_oscillators: number of oscillators
    trainX1,trainX2,trainY: training data
    testX1,testX2,testY: testing data
    
    Outputs:
    A: estimated adjacency matrix
    omega: estimated natural frequencies
    fout: estimated coupling function values evaluated at testX1
    K: estimated coupling strength
    
    '''
    learning_rate=params['learning_rate']
    n_epochs=params['n_epochs']
    batch_size=params['batch_size']
    n_oscillators=params['n_oscillators']
    method=params['prediction_method']
    global_seed=params['global_seed']
    # contruct model
    tf.reset_default_graph()
    if global_seed>0:
        tf.set_random_seed(global_seed) # remove this later
    # initialize placeholders for inputs
    X1 = tf.placeholder(dtype=tf.float32, shape=(None,n_oscillators,n_oscillators,1), name="X1")
    X2 = tf.placeholder(dtype=tf.float32, shape=(None,n_oscillators), name="X2")
    y = tf.placeholder(dtype=tf.float32, shape=(None,n_oscillators), name="y")
    
    
    ## initialize variable A (Adjacency matrix) that is symmetric with 0 entries on the diagonal.
    A_rand=tf.Variable(tf.random_normal((n_oscillators,n_oscillators),
                                        mean=0.5,
                                        stddev=1/n_oscillators),
                       name='A_rand',
                       dtype=tf.float32)
    
    A_upper = tf.matrix_band_part(A_rand, 0, -1)
    A = 0.5 * (A_upper + tf.transpose(A_upper))-tf.matrix_band_part(A_upper,0,0)
    
    ## initialize variable omega (natural frequencies) 
    omega=tf.Variable(tf.random_normal((1,n_oscillators),mean=0,stddev=1/n_oscillators,dtype=tf.float32),
                      name='omega',dtype=tf.float32) 
    
    ## initialize variable K (coupling strength value)
    K=tf.Variable(tf.random_normal(shape=(1,),mean=1,stddev=1/n_oscillators,dtype=tf.float32),name='K') 
    
    
    c=np.array([1.0,1.0]) # regularization parameters for A matrix
    
    ## compute phase velocities
    v,fout=get_vel(A,omega,K,X1,params)
    
    ## compute predicitions
    
    if method=='rk2':
        k1=v
        k2=get_vel(A,omega,K,get_diff_tensor(X2+params['dt']*k1/2.0,params),params)[0] # compute improved velocity prediction
        velpred=k2
    elif method=='rk4':
        k1=v
        k2=get_vel(A,omega,K,get_diff_tensor(X2+params['dt']*k1/2.0,params),params)[0]
        k3=get_vel(A,omega,K,get_diff_tensor(X2+params['dt']*k2/2.0,params),params)[0]
        k4=get_vel(A,omega,K,get_diff_tensor(X2+params['dt']*k3,params),params)[0]
        velpred=1/6.0*k1+1/3.0*k2+1/3.0*k3+1/6.0*k4
    elif method=='euler':
        velpred=v
    else:
        print('Invalid prediction method. Using default of Euler.')
        velpred=v

    
    ## compute regularization terms for neural network weights
    l2_loss = tf.losses.get_regularization_loss()
    
    ## loss function computation
    with tf.name_scope("loss"):
        loss=loss_sse(velpred,y,A,c)+l2_loss
        
    ## initialize optimizer (use Adam)
    with tf.name_scope("train"):
        #optimizer=tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
        optimizer=tf.train.AdamOptimizer(learning_rate=learning_rate,beta1=0.9,beta2=0.999)
        training_op=optimizer.minimize(loss)
        
    ## compute error to be displayed (currently ignores regularization terms)
    with tf.name_scope("eval"):
        error=loss_sse(velpred,y,A,np.array([0.0,0.0])) # no Aij error away from 0,1
        
    init=tf.global_variables_initializer()

    
    ## initialize variables and optimize variables
    with tf.Session() as sess:
        init.run()
        ## loop for batch gradient descent
        for epoch in range(n_epochs):
            for X1_batch,X2_batch, y_batch in shuffle_batch(add_dim(trainX1), trainX2,trainY, batch_size):
                sess.run(training_op, feed_dict={X1: X1_batch, X2: X2_batch, y: y_batch})
            error_batch = error.eval(feed_dict={X1: X1_batch, X2: X2_batch, y: y_batch})
            error_val = error.eval(feed_dict={X1: add_dim(testX1), X2: testX2, y: testY})
            ## display results every 20 epochs
            if epoch % 20==0:
                print('',end='\n')
                print("Epoch:",epoch, "Batch error:", error_batch, "Val error:", error_val,end='')
            else:
                print('.',end='')
                #print(tf.trainable_variables())
        print('',end='\n')
        return(A.eval(),
               omega.eval(),
               fout.eval(feed_dict={X1: add_dim(np.angle(np.exp(1j*testX1))), X2: testX2, y: testY}),
               K.eval(),error_val)
示例#38
0
文件: p4.py 项目: rzmeditzyt/tensor
def mnist_model(learning_rate, use_two_conv, use_two_fc, hparam):
  tf.reset_default_graph()
  sess = tf.Session()

  # Setup placeholders, and reshape the data
  x = tf.placeholder(tf.float32, shape=[None, 784], name="x")
  x_image = tf.reshape(x, [-1, 28, 28, 1])
  tf.summary.image('input', x_image, 3)
  y = tf.placeholder(tf.float32, shape=[None, 10], name="labels")

  if use_two_conv:
    conv1 = conv_layer(x_image, 1, 32, "conv1")
    conv_out = conv_layer(conv1, 32, 64, "conv2")
  else:
    conv1 = conv_layer(x_image, 1, 64, "conv")
    conv_out = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")

  flattened = tf.reshape(conv_out, [-1, 7 * 7 * 64])


  if use_two_fc:
    fc1 = fc_layer(flattened, 7 * 7 * 64, 1024, False, "fc1")
    embedding_input = fc1
    embedding_size = 1024
    #logits = fc_layer(fc1, 1024, 10, "fc2")
    logits = fc_layer(fc1, 1024, 10, True, "fc2")
  else:
    embedding_input = flattened
    embedding_size = 7*7*64
    logits = fc_layer(flattened, 7*7*64, 10, True, "fc")

  with tf.name_scope("xent"):
    xent = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits(
            logits=logits, labels=y), name="xent")
    tf.summary.scalar("xent", xent)

  with tf.name_scope("train"):
    train_step = tf.train.MomentumOptimizer(learning_rate,0.9).minimize(xent)

  with tf.name_scope("accuracy"):
    correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    tf.summary.scalar("accuracy", accuracy)

  summ = tf.summary.merge_all()


  embedding = tf.Variable(tf.zeros([1024, embedding_size]), name="test_embedding")
  assignment = embedding.assign(embedding_input)
  saver = tf.train.Saver()

  sess.run(tf.global_variables_initializer())
  writer = tf.summary.FileWriter(LOGDIR + hparam)
  writer.add_graph(sess.graph)

  config = tf.contrib.tensorboard.plugins.projector.ProjectorConfig()
  embedding_config = config.embeddings.add()
  embedding_config.tensor_name = embedding.name
  embedding_config.sprite.image_path = LOGDIR + 'sprite_1024.png'
  embedding_config.metadata_path = LOGDIR + 'labels_1024.tsv'
  # Specify the width and height of a single thumbnail.
  embedding_config.sprite.single_image_dim.extend([28, 28])
  tf.contrib.tensorboard.plugins.projector.visualize_embeddings(writer, config)

  for i in range(2000):
    batch = mnist.train.next_batch(100)
    if i % 5 == 0:
      [train_accuracy, s] = sess.run([accuracy, summ], feed_dict={x: batch[0], y: batch[1]})
      writer.add_summary(s, i)
      print("Training Acc : " + str(i) + ":  " + str(train_accuracy) )
    if i % 500 == 0:
      sess.run(assignment, feed_dict={x: mnist.test.images[:1024], y: mnist.test.labels[:1024]})
      saver.save(sess, os.path.join(LOGDIR, "model.ckpt"), i)
    sess.run(train_step, feed_dict={x: batch[0], y: batch[1]})
  test_accuracy = sess.run(accuracy, feed_dict={x: mnist.test.images[:1024], y: mnist.test.labels[:1024]})
  print("Test accuracy is {}".format(test_accuracy))
示例#39
0
 def close(self):
     if self.session is not None:
         print('DELF: closing tf session')
         self.session.close()
         tf.reset_default_graph()
示例#40
0
    def RetrieveImage(self):
        id = self.imgName[-10:-4]
        id_i = []
        fg = 0
        for i in id:
            if i != '0' or fg:
                id_i.append(i)
                fg = 1
        id_i = [str(a) for a in id_i]
        image_id = int(''.join(id_i))
        print(self.imgName)

        img = cv2.imread(self.imgName)
        jpg = img[:, :, [2, 1, 0]]
        im_orig = jpg.astype(np.float32, copy=True)
        im_orig -= np.array([[[102.9801, 115.9465, 122.7717]]])
        im_shape = im_orig.shape
        im_orig = im_orig.reshape(1, im_shape[0], im_shape[1], 3)
        self.im_orig = im_orig
        self.im_shape = im_shape
        self.jpg = jpg

        Test_RCNN = pickle.load(open(
            cfg.DATA_DIR + '/' +
            'Test_Faster_RCNN_R-50-PFN_2x_VCOCO_with_pose.pkl', "rb"),
                                encoding='latin1')
        prior_mask = pickle.load(open(cfg.DATA_DIR + '/' + 'prior_mask.pkl',
                                      "rb"),
                                 encoding='latin1')
        Action_dic = json.load(open(cfg.DATA_DIR + '/' + 'action_index.json'))
        Action_dic_inv = {y: x for x, y in Action_dic.items()}

        vcocoeval = VCOCOeval(
            cfg.DATA_DIR + '/' + 'v-coco/data/vcoco/vcoco_test.json',
            cfg.DATA_DIR + '/' + 'v-coco/data/instances_vcoco_all_2014.json',
            cfg.DATA_DIR + '/' + 'v-coco/data/splits/vcoco_test.ids')
        p_weight = 'E:/projects/Transferable-Interactiveness-Network/Weights/TIN_VCOCO/HOI_iter_6000.ckpt'
        p_output_file = 'E:/projects/Transferable-Interactiveness-Network/-Results/p_detection_TIN_VCOCO_0.6_0.4_GUItest_naked.pkl'  # 最佳预测试结果
        # init session
        tf.reset_default_graph()
        tfconfig = tf.ConfigProto(allow_soft_placement=True)
        tfconfig.gpu_options.allow_growth = True
        sess = tf.Session(config=tfconfig)
        net = ResNet50()
        net.create_architecture(False)
        saver = tf.train.Saver()
        saver.restore(sess, p_weight)
        p_detection = []

        im_detect_GUI(sess, net, im_orig, im_shape, image_id, Test_RCNN,
                      prior_mask, Action_dic_inv, 0.4, 0.6, 3, p_detection)
        # print(detection)
        pickle.dump(p_detection, open(p_output_file, "wb"))
        sess.close()
        # 为了得到单个图像的模型预测,对之后的图像test的NIS进行参考

        #weight = 'E:/projects/Transferable-Interactiveness-Network/Weights/TIN_VCOCO/HOI_iter_6000.ckpt'

        weight = 'E:/projects/Transferable-Interactiveness-Network/Weights/TIN_VCOCO_Mytest/HOI_iter_10.ckpt'
        # init session
        tf.reset_default_graph()
        tfconfig = tf.ConfigProto(allow_soft_placement=True)
        tfconfig.gpu_options.allow_growth = True
        sess = tf.Session(config=tfconfig)
        net = ResNet50()
        net.create_architecture(False)
        saver = tf.train.Saver()
        saver.restore(sess, weight)
        detection = []

        im_detect_GUI(sess, net, im_orig, im_shape, image_id, Test_RCNN,
                      prior_mask, Action_dic_inv, 0.4, 0.6, 3, detection)
        # print(detection)
        #pickle.dump(detection, open(output_file, "wb"))
        sess.close()

        #test_result = detection
        #input_D = cfg.ROOT_DIR + '/-Results/TIN_VCOCO_0.6_0.4_GUItest_naked.pkl'  # 模型预测,对NIS进行参考
        #with open(input_D, 'rb') as f:
        #    test_D = pickle.load(f, encoding='latin1')
        output_file = 'E:/projects/Transferable-Interactiveness-Network/-Results/p_nis_detection_TIN_VCOCO_0.6_0.4_GUItest_naked.pkl'
        generate_result = generate_pkl_GUI(p_detection,
                                           detection,
                                           prior_mask,
                                           Action_dic_inv, (6, 6, 7, 0),
                                           prior_flag=3)
        with open(output_file, 'wb') as f:
            pickle.dump(generate_result, f)
        max = 50
        min = 0
        action_name = []
        action_score = []
        action_HO_weight = []
        for ele in generate_result:
            if (ele['image_id'] == image_id):
                for action_key, action_value in ele.items():
                    if (action_key.split('_')[-1] != 'agent') and action_key != 'image_id' and action_key != 'person_box' \
                            and action_key != 'object_class' and action_key != 'object_box' \
                            and action_key != 'binary_score'and action_key != 'O_det' and action_key != 'H_det':
                        if (not np.isnan(
                                action_value[0])) and (action_value[4] > 0.01):
                            O_box = action_value[:4]
                            H_box = ele['person_box']
                            HO_weight = ((O_box[2] - O_box[0]) *
                                         (O_box[3] - O_box[1])) / (
                                             (H_box[2] - H_box[0]) *
                                             (H_box[3] - H_box[1]))
                            action_name.append(action_key.split('_')[0])
                            action_score.append(action_value[4])
                            action_HO_weight.append(HO_weight)

        Image_action_MaxScore = np.max(action_score)
        normalization = (Image_action_MaxScore - min) / (max - min)
        Image_action_MaxScore_name = action_name[action_score.index(
            Image_action_MaxScore)]
        P_HO_weight = action_HO_weight[action_score.index(
            Image_action_MaxScore)]
        p_similar_score = normalization * 0.5 + 0.5
        #print(action_score)
        #print(Image_action_MaxScore)
        #print(Image_action_MaxScore_name)

        Detection = pickle.load(
            open(cfg.ROOT_DIR + "/Results/CVPR_best_VCOCO_nis_best_lis.pkl",
                 "rb"))
        image_ids = np.loadtxt(
            open(cfg.DATA_DIR + '/' + 'v-coco/data/splits/vcoco_test.ids',
                 'r'))

        D_action_image_id = []
        D_action_image_score = []
        D_action_image_verb_score = []
        for ele in Detection:
            D_action_name = []
            D_action_score = []
            D_action_HO_weight = []
            if ele['image_id'] in image_ids:
                # print(ele['image_id'])
                for action_key, action_value in ele.items():
                    if (action_key.split('_')[-1] != 'agent') and action_key != 'image_id' \
                            and action_key != 'person_box' and action_key != 'object_class' \
                            and action_key != 'object_box' and action_key != 'binary_score'\
                            and action_key != 'O_det' and action_key != 'H_det':
                        if (not np.isnan(
                                action_value[0])) and (action_value[4] > 0.01):
                            O_box = action_value[:4]
                            H_box = ele['person_box']
                            HO_weight = ((O_box[2] - O_box[0]) *
                                         (O_box[3] - O_box[1])) / (
                                             (H_box[2] - H_box[0]) *
                                             (H_box[3] - H_box[1]))
                            D_action_name.append(action_key.split('_')[0])
                            D_action_score.append(action_value[4])
                            D_action_HO_weight.append(HO_weight)
            if len(D_action_score) == 0:
                continue
            D_Image_action_MaxScore = np.max(D_action_score)
            #max_HO_weight = np.max(D_action_HO_weight)
            D_Image_action_MaxScore_name = D_action_name[D_action_score.index(
                D_Image_action_MaxScore)]
            D_Image_action_MaxScore_HO_weight = D_action_HO_weight[
                D_action_score.index(D_Image_action_MaxScore)]
            if D_Image_action_MaxScore_name == Image_action_MaxScore_name:
                D_action_image_id.append(ele['image_id'])
                normalization = (D_Image_action_MaxScore - min) / (max - min)
                similar_score = normalization * 0.2 + (
                    (abs(P_HO_weight - D_Image_action_MaxScore_HO_weight) -
                     252)**2) / 63500 * 0.8  #归一化得分
                D_action_image_score.append(similar_score)
                D_action_image_verb_score.append(D_Image_action_MaxScore)
        #All_Image_action_MaxScore = np.max(D_action_image_score)
        #All_Image_action_MaxScore_id = D_action_image_id[D_action_image_score.index(All_Image_action_MaxScore)]
        new_list_arr = np.array(D_action_image_score)
        list = np.argsort(-new_list_arr)
        All_Image_action_MaxScore_id = []
        All_Image_action_MaxScore_sim = []
        All_Image_action_MaxScore_ver = []
        for i in list:
            im_file = str(
                'E:/DATASETS/VCOCO/v-coco/coco/images/val2014/COCO_val2014_' +
                (str(D_action_image_id[i]).zfill(12) + '.jpg'))
            #self.textBrowser.append("<html><p><a href="+im_file+">Image:{0}<br>S_score:{1}<br>V_scroe:{2}</a></p></html>".format(str(D_action_image_id[i]), str('%.4f' % D_action_image_score[i]),str('%.4f' % D_action_image_verb_score[i])))
            self.textBrowser.append(
                "Image:{0}\r\nS_score:{1}\r\nV_scroe:{2}\r\n".format(
                    str(D_action_image_id[i]),
                    str('%.4f' % D_action_image_score[i]),
                    str('%.4f' % D_action_image_verb_score[i])))
            self.cursor = self.textBrowser.textCursor()
            self.textBrowser.moveCursor(self.cursor.End)
            All_Image_action_MaxScore_id.append(D_action_image_id[i])
            All_Image_action_MaxScore_sim.append(D_action_image_score[i])
            All_Image_action_MaxScore_ver.append(D_action_image_verb_score[i])
        self.childwin.show()
        self.childwin.image_show(list, All_Image_action_MaxScore_id,
                                 All_Image_action_MaxScore_sim,
                                 All_Image_action_MaxScore_ver)
示例#41
0
 def setUp(self):
     tf.reset_default_graph()
 def load_pretrained_model(self, run_name = 'reddit_comment_generator', checkpoint_dir = './GPT2/checkpoint'):
   tf.reset_default_graph()
   self.tf_sess = gpt2.start_tf_sess()
   gpt2.load_gpt2(self.tf_sess, run_name = run_name, checkpoint_dir = checkpoint_dir)
示例#43
0
    def build_model(self):
        """
        Implements the tensorflow computational graph for the child model to be trained
        """
        tf.reset_default_graph()
        print("Building model...")
        with tf.name_scope('Conv1'):
            w_conv1 = tf.get_variable(
                "conv1_weights",
                shape=[5, 5, 3, 16],
                initializer=tf.contrib.layers.xavier_initializer_conv2d(),
                dtype=tf.float64)
            b_conv1 = tf.Variable(tf.constant(0.05,
                                              shape=[16],
                                              dtype=tf.float64),
                                  name='conv1_biases')

            conv1 = tf.nn.conv2d(input=self.x,
                                 filter=w_conv1,
                                 padding="SAME",
                                 strides=[1, 1, 1, 1])
            conv1 = tf.nn.relu(conv1 + b_conv1)

        with tf.name_scope('Pool1'):
            pool1 = tf.nn.max_pool(value=conv1,
                                   ksize=[1, 2, 2, 1],
                                   strides=[1, 2, 2, 1],
                                   padding="SAME")

        with tf.name_scope('Conv2'):
            w_conv2 = tf.get_variable(
                "conv2_weights",
                shape=[5, 5, 16, 36],
                initializer=tf.contrib.layers.xavier_initializer_conv2d(),
                dtype=tf.float64)
            b_conv2 = tf.Variable(tf.constant(0.05,
                                              shape=[36],
                                              dtype=tf.float64),
                                  name='conv2_biases')

            conv2 = tf.nn.conv2d(input=pool1,
                                 filter=w_conv2,
                                 padding="SAME",
                                 strides=[1, 1, 1, 1])
            conv2 += b_conv2

        with tf.name_scope('Pool2'):
            pool2 = tf.nn.max_pool(value=conv2,
                                   ksize=[1, 2, 2, 1],
                                   strides=[1, 2, 2, 1],
                                   padding="SAME")

        with tf.name_scope('FullyConnected1'):
            w_fc1 = tf.get_variable(
                "fc1_weights",
                shape=[1764, 128],
                initializer=tf.contrib.layers.xavier_initializer_conv2d(),
                dtype=tf.float64)
            b_fc1 = tf.Variable(tf.constant(0.05,
                                            shape=[128],
                                            dtype=tf.float64),
                                name='fc1_biases')

            flatten_input = tf.reshape(pool2, [-1, 1764])
            fc1 = tf.nn.relu(tf.matmul(flatten_input, w_fc1) + b_fc1)

        with tf.name_scope('FullyConnected2'):
            w_fc2 = tf.get_variable(
                "fc2_weights",
                shape=[128, 10],
                initializer=tf.contrib.layers.xavier_initializer_conv2d(),
                dtype=tf.float64)
            b_fc2 = tf.Variable(tf.constant(0.05, shape=[10],
                                            dtype=tf.float64),
                                name='fc2_biases')

            logits = tf.matmul(fc1, w_fc2) + b_fc2
            probabilities = tf.nn.softmax(logits)
            predictions = tf.argmax(probabilities, axis=1)

        with tf.name_scope("cross_entropy"):
            self.loss = tf.reduce_mean(
                tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits,
                                                           labels=self.y),
                name="cross_entropy")
        with tf.name_scope("train"):
            self.train_step = tf.train.AdamOptimizer(self.lr).minimize(
                self.loss)

        with tf.name_scope("accuracy"):
            y_cls = tf.argmax(self.y, axis=1)
            correct_prediction = tf.equal(predictions, y_cls)
            self.accuracy = tf.reduce_mean(
                tf.cast(correct_prediction, tf.float64))
示例#44
0
    def run(self):

        tf.reset_default_graph()

        print('')
        self.logger.info('===== building graph start =====')

        with tf.Graph().as_default() as graph:

            # datafeed
            self.logger.info('* datafeed')

            input_pipeline = InputPipeline(
                records=self._records_file,
                records_type=RecordsParser.RECORDS_UNLABELLED,
                shuffle_buffer_size=0,
                batch_size=self._batch_size,
                num_preprocessing_threads=self.NUM_PREPROCESSING_THREADS,
                num_repeat=1,
                preprocessing_fn=self._get_resize_function(
                    self._image_height, self._image_width),
                preprocessing_kwargs={},
                drop_remainder=True,
                compute_bpp=False,
                shuffle=False)

            images = input_pipeline.next_batch()[0]

            image_shape = images.get_shape().as_list()
            self.logger.info('image_shape: {}'.format(image_shape))

            # compression op
            self.logger.info('* compression')

            images_per_compression = []
            bpp_op_per_compression = []
            for j, compression_level in enumerate(self.COMPRESSION_LEVELS):
                # compress batch
                with tf.name_scope(
                        'compression_jpeg_{}'.format(compression_level)):
                    with tf.device(CPU_DEVICE):  # -> jpeg compression on cpu
                        img_batch_compressed, _bpp = TFJpeg.encode_decode_image_batch(
                            image_batch=tf.cast(images, tf.uint8),
                            quality=compression_level,
                            image_shape=image_shape[1:])

                    images_per_compression.append(
                        tf.cast(img_batch_compressed, tf.float32))
                    bpp_op_per_compression.append(_bpp)

            # compute distortions
            self.logger.info('* distortions')
            distortions_obj_per_compression = [
                Distortions(reconstructed_images=c_img_batch,
                            original_images=tf.cast(images, tf.float32),
                            lambda_ms_ssim=1.0,
                            lambda_psnr=1.0,
                            lambda_feature_loss=1.0,
                            data_format=self.DATA_FORMAT,
                            loss_net_kwargs=None)
                for c_img_batch in images_per_compression
            ]

            distortions_ops_per_compression = [{
                'ms_ssim': d.compute_ms_ssim()
            } for d in distortions_obj_per_compression]

        graph.finalize()

        with tf.Session(config=get_sess_config(allow_growth=True),
                        graph=graph) as sess:

            distortions_values_per_compression = [{
                key: list()
                for key in self.DISTORTION_KEYS
            } for _ in self.COMPRESSION_LEVELS]
            bpp_values_per_compression = [
                list() for _ in self.COMPRESSION_LEVELS
            ]
            n_images_processed = 0
            n_images_processed_per_second = deque(10 * [0.0], 10)
            progress(
                n_images_processed, self._dataset.NUM_VAL,
                '{}/{} images processed'.format(n_images_processed,
                                                self._dataset.NUM_VAL))

            try:
                while True:
                    batch_start_time = time.time()

                    # compute distortions and bpp
                    batch_bpp_values_per_compression, batch_distortions_values_per_compression = sess.run(
                        [
                            bpp_op_per_compression,
                            distortions_ops_per_compression
                        ])

                    # collect values
                    for comp_level, (dist_comp, bpp_comp) in enumerate(
                            zip(batch_distortions_values_per_compression,
                                batch_bpp_values_per_compression)):
                        bpp_values_per_compression[comp_level].extend(bpp_comp)
                        for key in self.DISTORTION_KEYS:
                            distortions_values_per_compression[comp_level][
                                key].append(dist_comp[key])

                    n_images_processed += len(
                        batch_bpp_values_per_compression[0])
                    n_images_processed_per_second.append(
                        len(batch_bpp_values_per_compression[0]) /
                        (time.time() - batch_start_time))

                    progress(n_images_processed,
                             self._dataset.NUM_VAL,
                             status='{}/{} images processed ({} img/s)'.format(
                                 n_images_processed, self._dataset.NUM_VAL,
                                 np.mean([
                                     t for t in n_images_processed_per_second
                                 ])))

            except tf.errors.OutOfRangeError:
                self.logger.info(
                    'reached end of dataset; processed {} images'.format(
                        n_images_processed))

            except KeyboardInterrupt:
                self.logger.info(
                    'manual interrupt; processed {}/{} images'.format(
                        n_images_processed, self._dataset.NUM_VAL))
                return [(np.nan, np.nan) for _ in self.COMPRESSION_LEVELS]

            mean_bpp_values_per_compression = [
                np.mean(bpp_vals) for bpp_vals in bpp_values_per_compression
            ]
            mean_dist_values_per_compression = [{
                key: np.mean(arr)
                for key, arr in dist_dict.items()
            } for dist_dict in distortions_values_per_compression]

            self._save_results(mean_bpp_values_per_compression,
                               mean_dist_values_per_compression, 'jpeg',
                               self.COMPRESSION_LEVELS)
def reset_env(seed = 42):
    tf.reset_default_graph()
    tf.set_random_seed(seed)
    np.random.seed(seed)
示例#46
0
    else:
        train_data = create_train_data(
            5)  # attribute label = 4 (old/young column)

    # Build CNN from tensorflow and tflearn libraries
    # CNN with 6 convolution layers and one fully connected layer

    import tflearn
    from tflearn.layers.conv import conv_2d, max_pool_2d
    from tflearn.layers.core import input_data, dropout, fully_connected
    from tflearn.layers.estimator import regression

    print('Building model...')

    import tensorflow as tf
    tf.reset_default_graph()  # resets graph if new model built

    cnn = input_data(shape=[None, img_size, img_size, 1], name='input')

    cnn = conv_2d(cnn, 32, 2, activation='tanh')
    cnn = max_pool_2d(cnn, 2)

    cnn = conv_2d(cnn, 64, 2, activation='tanh')
    cnn = max_pool_2d(cnn, 2)

    cnn = conv_2d(cnn, 32, 2, activation='tanh')
    cnn = max_pool_2d(cnn, 2)

    cnn = conv_2d(cnn, 64, 2, activation='tanh')
    cnn = max_pool_2d(cnn, 2)
示例#47
0
    def train_network(self):
        """
        trains a network with preprocessed data
        """
        tf.reset_default_graph()
        tf.set_random_seed(1)

        x = tf.placeholder(tf.float32,
                           shape=[None] + list(self.frame_shape),
                           name="input")
        y = tf.placeholder(tf.float32, shape=[None, 1], name="y")
        keep_prob = tf.placeholder(tf.float32, name="keep_prob")

        # Convolution
        # output = self.conv2d(x, 32, (3, 3), (1, 1), (2,2), (2,2))
        # output = self.conv2d(output, 64, (3, 3), (1, 1), (2, 2), (2, 2))
        output = self.conv2d(x, 5, (3, 3), (1, 1), (2, 2), (2, 2))
        output = self.conv2d(output, 10, (3, 3), (2, 2), (2, 2), (2, 2))

        output = tf.nn.dropout(output, keep_prob)

        output = tf.contrib.layers.flatten(output)

        # Fully Connected Layer
        output = self.fully_connected(output, 15)
        output = self.fully_connected(output, 1)
        output = tf.identity(output, name="output")

        # cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=y))

        error = tf.subtract(y, output)
        cost = tf.reduce_mean(tf.square(error))

        optimizer = tf.train.AdamOptimizer(self.learning_rate).minimize(cost)

        # init = tf.global_variables_initializer()

        if not self.trained:
            with tf.Session() as sess:
                sess.run(tf.global_variables_initializer())
                print("Number of epochs: %s" % (self.epochs))
                number_batches = int(
                    len(self.frame_label_queue) / self.batch_size)
                print("Number of batches: %s" % (number_batches))

                data_size = len(self.frame_label_queue)

                repeat_size = 3

                for _ in range(repeat_size):
                    batch_init = 0
                    batch_end = self.batch_size
                    for batch in range(number_batches):
                        # for train_frame, train_label in zip(train_frames, train_labels):
                        if data_size - batch_init < self.batch_size:
                            batch_end = data_size

                        if batch_end - batch_init == 0:
                            break

                        print(len(
                            self.frame_label_queue[batch_init:batch_end]))
                        self.process(
                            self.frame_label_queue[batch_init:batch_end])

                        print("----- Batch %s -----" % (batch + 1))
                        for epoch in range(self.epochs):

                            sess.run(optimizer,
                                     feed_dict={
                                         x: self.frames,
                                         y: self.labels,
                                         keep_prob: self.keep_prob,
                                     })

                            print("Epoch: %s Error: %s" %
                                  (epoch,
                                   sess.run(cost,
                                            feed_dict={
                                                x: self.frames,
                                                y: self.labels,
                                                keep_prob: self.keep_prob,
                                            })))
                        batch_init += self.batch_size
                        batch_end += self.batch_size
                    # Save Model
                    self.saver = tf.train.Saver()
                    self.saver.save(sess, self.save_path)

            self.trained = True
示例#48
0
def run(cfg, dataset_path, logs_dir, checkpoints_dir, checkpoints=True):
    with tf.Session() as sess:
        get_data = from_files.get_data_provider(dataset_path, cfg.batch_size)
        get_gen = from_files.get_genconst_provider(dataset_path,
                                                   cfg.batch_size)

        if cfg.validation:
            get_valid_data = from_files.get_valid_provider(
                dataset_path, cfg.batch_size)
            get_valid_const = from_files.get_validconst_provider(
                dataset_path, cfg.batch_size)
        else:
            get_valid_data = None
            get_valid_const = None

        get_noise = cfg.noise_provider(**cfg.noise_provider_args)

        if cfg.fid_model is not None:
            fid = create_fid_func(cfg.fid_model, sess)
        else:
            fid = lambda x, y: 0

        # Building models
        Z = tf.placeholder(tf.float32, (
            None,
            cfg.zx,
            cfg.zx,
            cfg.nz,
        ),
                           name="Z")
        X = tf.placeholder(tf.float32, (
            None,
            cfg.npx,
            cfg.npx,
            cfg.channels,
        ),
                           name="X")
        C = tf.placeholder(tf.float32, (
            None,
            cfg.npx,
            cfg.npx,
            cfg.channels,
        ),
                           name="C")
        Cf = tf.placeholder(tf.float32, (
            None,
            cfg.npx,
            cfg.npx,
            cfg.channels,
        ),
                            name="Cf")

        D = cfg.discriminator(X, C, **cfg.disc_args)
        G = cfg.generator(Z, Cf, **cfg.gen_args)

        D_out = D.output
        G_out = G.output

        with tf.name_scope("DG"):
            DG = D([G_out, Cf])

        # Objectives
        with tf.name_scope("D_real_objective"):
            D_real_objective = cfg.loss_disc_real(D, G, Z, X, C, Cf)

        with tf.name_scope("D_fake_objective"):
            D_fake_objective = cfg.loss_disc_fake(D, G, Z, X, C, Cf)

        with tf.name_scope("D_objective"):
            D_objective = D_real_objective + D_fake_objective

        with tf.name_scope("MSE_cost"):
            mse = cfg.regularizer(D, G, Z, X, C, Cf)

        with tf.name_scope("G_objective"):
            G_real_objective = cfg.loss_gen(D, G, Z, X, C, Cf)
            G_objective = G_real_objective + (cfg.lmbda * mse)

        # Optimizers
        D_optimizer = cfg.disc_optimizer(**cfg.disc_optimizer_args)
        G_optimizer = cfg.gen_optimizer(**cfg.gen_optimizer_args)

        D_cost = D_optimizer.minimize(D_objective,
                                      var_list=D.trainable_weights)
        G_cost = G_optimizer.minimize(G_objective,
                                      var_list=G.trainable_weights)

        # Logging costs
        msesumm = tf.summary.scalar("MSE_train", mse)
        drealcostsumm = tf.summary.scalar("D_real_cost", D_real_objective)
        dfakecostsumm = tf.summary.scalar("D_fake_cost", D_fake_objective)
        gcostsumm = tf.summary.scalar("G_cost", G_real_objective)

        # Logging images
        constimgpl = tf.placeholder(tf.float32, shape=(1, cfg.npx, cfg.npx, 3))
        consttrueimgpl = tf.placeholder(tf.float32,
                                        shape=(1, cfg.npx, cfg.npx, 3))
        imgpl = tf.placeholder(tf.float32,
                               shape=(1, cfg.npx, cfg.npx, cfg.channels))
        trueimgpl = tf.placeholder(tf.float32,
                                   shape=(1, cfg.npx, cfg.npx, cfg.channels))

        imgsummaries = [
            tf.summary.image("Generated_const", constimgpl),
            tf.summary.image("Ground_truth_const", consttrueimgpl),
            tf.summary.image("Generated", imgpl),
            tf.summary.image("Ground_truth", trueimgpl)
        ]

        imgsumm = tf.summary.merge(imgsummaries)

        # Logging weights histograms
        weightsumms = []
        for layer in D.layers:
            i = 0
            for vect in layer.trainable_weights:
                weightsumms.append(
                    tf.summary.histogram("D_" + layer.name + str(i), vect))
        for layer in G.layers:
            i = 0
            for vect in layer.trainable_weights:
                weightsumms.append(
                    tf.summary.histogram("G_" + layer.name + str(i), vect))

        weightsum = tf.summary.merge(weightsumms)

        # Setting up the training
        sess.run(tf.global_variables_initializer())
        writer = tf.summary.FileWriter(logs_dir + os.sep + cfg.name,
                                       tf.get_default_graph())
        os.mkdir(checkpoints_dir)
        writer.flush()

        # Do the actual training
        for epoch in range(cfg.epochs):
            bar = progressbar.ProgressBar(maxvalue=cfg.epoch_iters,
                                          redirect_stdout=True)
            print(
                "----------------------------------------------------Epoch " +
                str(epoch) +
                "----------------------------------------------------")

            for it in bar(range(int(cfg.dataset_size / cfg.batch_size))):
                # Training D
                x_real, c_real = get_data()
                c_fake = get_gen()
                noise = get_noise(cfg.batch_size)
                _, drealout, dfakeout = sess.run(
                    [D_cost, drealcostsumm, dfakecostsumm],
                    feed_dict={
                        X: x_real,
                        Z: noise,
                        C: c_real,
                        Cf: c_fake
                    })

                # Training G
                c_fake = get_gen()
                noise = get_noise(cfg.batch_size)
                _, mseout, gout = sess.run([G_cost, msesumm, gcostsumm],
                                           feed_dict={
                                               Z: noise,
                                               Cf: c_fake
                                           })

                # Logging losses
                t = int(cfg.dataset_size / cfg.batch_size) * epoch + it
                writer.add_summary(drealout, t)
                writer.add_summary(dfakeout, t)
                writer.add_summary(gout, t)
                writer.add_summary(mseout, t)

            # Epoch ended

            # Logging metrics on validation set
            curmets = {}
            generated = []
            valid_data = []
            valid_consts = []
            bar = progressbar.ProgressBar(maxvalue=int(cfg.valid_size /
                                                       cfg.batch_size),
                                          redirect_stdout=True)
            print("Generating on validation")
            for i in bar(range(int(cfg.valid_size / cfg.batch_size))):
                real_imgs = get_valid_data()
                consts = get_valid_const()
                if len(real_imgs) == cfg.batch_size:
                    noise = get_noise(cfg.batch_size)
                    generated.extend(
                        list(sess.run(G_out, feed_dict={
                            Z: noise,
                            Cf: consts
                        })))
                    valid_data.extend(list(real_imgs))
                    valid_consts.extend(list(consts))

            generated = np.asarray(generated)
            valid_data = np.asarray(valid_data)
            valid_consts = np.asarray(valid_consts)

            for m in cfg.metrics:
                if m not in curmets:
                    curmets[m] = []
                curmets[m].append(cfg.metrics[m](valid_data, generated))

            metricslist = [
                tf.Summary.Value(tag="MSE",
                                 simple_value=metrics.mse(
                                     generated, valid_consts)),
                tf.Summary.Value(tag="FID",
                                 simple_value=fid(valid_data, generated))
            ]

            for m in curmets.keys():
                metricslist.append(
                    tf.Summary.Value(tag=m, simple_value=np.mean(curmets[m])))
            metricsout = tf.Summary(value=metricslist)

            # Logging weights histograms
            weightout = sess.run(weightsum)

            # Logging images
            print("Logging images")
            true_img = np.expand_dims(x_real[0], axis=0)
            const = np.expand_dims(c_real[0], axis=0)
            noise = get_noise(1)
            img = sess.run(G_out, feed_dict={Z: noise, Cf: const})

            imgout = sess.run(imgsumm,
                              feed_dict={
                                  trueimgpl:
                                  true_img,
                                  imgpl:
                                  img,
                                  constimgpl:
                                  log.constraints_image(img, const),
                                  consttrueimgpl:
                                  log.constraints_image(true_img, const)
                              })
            writer.flush()

            # Writing all logs as tensorboard
            writer.add_summary(metricsout, epoch)
            writer.add_summary(imgout, epoch)
            writer.add_summary(weightout, epoch)
            writer.flush()

            # Saving weights
            if checkpoints:
                G.save(checkpoints_dir + os.sep + "G_" + str(epoch) + ".hdf5",
                       include_optimizer=False)
                D.save(checkpoints_dir + os.sep + "D_" + str(epoch) + ".hdf5",
                       include_optimizer=False)

        # Run end
        writer.close()
    tf.reset_default_graph()
def Lr_finder(epochs = 10, min_lr = 1e-5, max_lr = 10, params = ['Lr_finder'], fin_wt_dec = 0, fin_dropout = 0, vanilla = False, 
              wt_dec_gridsearch = False, dropout_gridsearch = False):
    
    """
    Arguments:
    epochs:             Number of epochs to run
    min_lr:             Max_learning rate in one-cycle policy
    max_lr:             Min_learning rate in one-cycle policy
    params:             Grid Search parameters
    fin_wt_dec:         Constant weight decay value to be used while training
    fin_dropout:        Constant dropout value to be used while training
    vanilla:            Boolean, whether to run vanilla LR_finder
    wt_dec_gridsearch:  Boolean, whether to run grid search over wt_decay values
    dropout_gridsearch: Boolean, whether to run grid search over dropout values
    """
    
#   Get the learning rate collection corresponding to the first part of the training

    g_lr_finder = tf.get_default_graph();
    with g_lr_finder.as_default():    
        
        plt.figure(figsize = (20, 10)); epochs = epochs*2; tf.set_random_seed(42); 
        with tf.Session(graph = g_lr_finder) as sess:
          
#           Initialize the model
            logits, loss, accuracy = initialize_model();
            for ind, val in enumerate(params):
  
#               Run Grid_Search for wt_dec values if boolean wt_dec_gridsearch is true 
                if wt_dec_gridsearch: print('Grid_Search statrted corresponding to wt_dec: ' + str(val)); train_step = training(loss, val);
                else: train_step = training(loss, fin_wt_dec);
          
#               Run Grid_Search for Dropout values if boolean dropout_gridsearch is true
                if dropout_gridsearch: print('Grid_Search statrted corresponding to dropout: ' + str(val)); drop_prob = val;
                else: drop_prob = fin_dropout;
                  
#               Run Vanilla LR_finder if boolean vanilla is true
                if vanilla: print("Vanilla Lr_finder Started:"); 

#               Get the iterators, LR collection and momentum collection
                handle, next_element, train_iter, train_handle, val_iter, val_handle, test_iter, test_handle = get_dataset_iterators(sess); 
                learning_rate_collection = []; val_acc_collection = []; 
    
                sess.run([tf.global_variables_initializer()]); sess.run(train_iter.initializer); 
                lr_coll, mom_coll = lr_mom_calculator(epochs, max_lr, min_lr, False);

                for ptr in range(len(lr_coll)):
                  
                    curr_lr = lr_coll[ptr]; curr_beta1 = mom_coll[ptr];
                    try: X_train_batch, y_train_batch = sess.run(next_element, feed_dict = {handle: train_handle});
                    except tf.errors.OutOfRangeError: sess.run(train_iter.initializer)
                    
#                   Run the training step to update the parameters and collect loss and acc values
                    _, train_loss, train_acc = sess.run([train_step, loss, accuracy], feed_dict = {X_ph: X_train_batch, y_ph: y_train_batch, 
                                                        lr_ph: curr_lr, train_mode: True, beta1_ph: curr_beta1, dropout: drop_prob})
  
#                   Evaluate the trained model on eval set after every certain number of iterations
                    if ptr % 25 == 0 and ptr > num_train_iters:
                        sess.run(val_iter.initializer); tot_val_loss = 0; tot_val_acc = 0;
                        for val_ptr in range(num_val_iters + 1):
                  
#                           Grab a batch of Validation set and calculate running sum of some useful statistics
                            try: X_val_batch, y_val_batch = sess.run(next_element, feed_dict = {handle: val_handle}); 
                            except tf.errors.OutOfRangeError: sess.run(val_iter.initializer);

                            val_loss, val_acc = sess.run([loss, accuracy], feed_dict = {X_ph: X_val_batch, y_ph: y_val_batch, 
											train_mode: False, dropout: 0});
          
                            tot_val_loss += val_loss; tot_val_acc += val_acc;
                        val_acc_collection.append(tot_val_acc/(num_val_iters + 1)); learning_rate_collection.append(curr_lr); 
            
#               Get a smoothed version of the accuracy plot!!
                val_acc_collection_smooth = smooth(val_acc_collection); 
                plot_graph(learning_rate_collection, val_acc_collection_smooth, str(val), colors[ind]); 
            
#           Terminate the Session"""
            sess.close();
          
#       Reset the default graph in order to ensure that weights of the network at start are random for each Grid_search_param"""
        tf.reset_default_graph(); 
        
#   Show the plot
    plt.show()
示例#50
0
def reset():
    global _PLACEHOLDER_CACHE
    global VARIABLES
    _PLACEHOLDER_CACHE = {}
    VARIABLES = {}
    tf.reset_default_graph()
def test_tf_faster_rcnn(art_warning, get_mnist_dataset):
    try:
        master_seed(seed=1234, set_tensorflow=True)

        # Only import if object detection module is available
        from art.estimators.object_detection.tensorflow_faster_rcnn import TensorFlowFasterRCNN

        # Define object detector
        images = tf.placeholder(tf.float32, shape=[1, 28, 28, 1])
        obj_dec = TensorFlowFasterRCNN(images=images)

        # Get test data
        (_, _), (x_test_mnist, y_test_mnist) = get_mnist_dataset
        x_test_mnist = x_test_mnist[:1]

        # First test predict
        result = obj_dec.predict(x_test_mnist)

        assert list(result[0].keys()) == ["boxes", "labels", "scores"]

        assert result[0]["boxes"].shape == (300, 4)
        expected_detection_boxes = np.asarray([0.008862, 0.003788, 0.070454, 0.175931])
        np.testing.assert_array_almost_equal(result[0]["boxes"][2, :], expected_detection_boxes, decimal=3)

        assert result[0]["scores"].shape == (300,)
        expected_detection_scores = np.asarray(
            [
                2.196349e-04,
                7.968055e-05,
                7.811916e-05,
                7.334248e-05,
                6.868376e-05,
                6.861838e-05,
                6.756858e-05,
                6.331169e-05,
                6.313509e-05,
                6.222352e-05,
            ]
        )
        np.testing.assert_array_almost_equal(result[0]["scores"][:10], expected_detection_scores, decimal=3)

        assert result[0]["labels"].shape == (300,)
        expected_detection_classes = np.asarray([37, 15, 15, 66, 15, 15, 15, 63, 2, 66])
        np.testing.assert_array_almost_equal(result[0]["labels"][:10], expected_detection_classes)

        # Then test loss gradient
        # Create labels
        y = [{"boxes": result[0]["boxes"], "labels": result[0]["labels"], "scores": np.ones_like(result[0]["labels"])}]

        # Compute gradients
        grads = obj_dec.loss_gradient(x_test_mnist[:1], y)

        assert grads.shape == (1, 28, 28, 1)

        expected_gradients = np.asarray(
            [
                [-0.00298723],
                [-0.0039893],
                [-0.00036253],
                [0.01038542],
                [0.01455704],
                [0.00995643],
                [0.00424966],
                [0.00470569],
                [0.00666382],
                [0.0028694],
                [0.00525351],
                [0.00889174],
                [0.0071413],
                [0.00618231],
                [0.00598106],
                [0.0072665],
                [0.00708815],
                [0.00286943],
                [0.00411595],
                [0.00788978],
                [0.00587319],
                [0.00808631],
                [0.01018151],
                [0.00867905],
                [0.00820272],
                [0.00124911],
                [-0.0042593],
                [0.02380728],
            ]
        )
        np.testing.assert_array_almost_equal(grads[0, 0, :, :], expected_gradients, decimal=2)

        # Then test loss gradient with standard format
        # Create labels
        result_tf = obj_dec.predict(x_test_mnist, standardise_output=False)
        result = obj_dec.predict(x_test_mnist, standardise_output=True)

        from art.estimators.object_detection.utils import convert_tf_to_pt

        result_pt = convert_tf_to_pt(y=result_tf, height=x_test_mnist.shape[1], width=x_test_mnist.shape[2])

        np.testing.assert_array_equal(result[0]["boxes"], result_pt[0]["boxes"])
        np.testing.assert_array_equal(result[0]["labels"], result_pt[0]["labels"])
        np.testing.assert_array_equal(result[0]["scores"], result_pt[0]["scores"])

        y = [{"boxes": result[0]["boxes"], "labels": result[0]["labels"], "scores": np.ones_like(result[0]["labels"])}]

        # Compute gradients
        grads = obj_dec.loss_gradient(x_test_mnist[:1], y, standardise_output=True)

        assert grads.shape == (1, 28, 28, 1)

        expected_gradients = np.asarray(
            [
                [-0.00095965],
                [-0.00265362],
                [-0.00031886],
                [0.01132964],
                [0.01674244],
                [0.01262039],
                [0.0063345],
                [0.00673249],
                [0.00618648],
                [0.00422678],
                [0.00542425],
                [0.00814896],
                [0.00919153],
                [0.01068758],
                [0.00929435],
                [0.00877143],
                [0.00747379],
                [0.0050377],
                [0.00656254],
                [0.00799547],
                [0.0051057],
                [0.00714598],
                [0.01090685],
                [0.00787637],
                [0.00709959],
                [0.00047201],
                [-0.00460457],
                [0.02629307],
            ]
        )
        np.testing.assert_array_almost_equal(grads[0, 0, :, :], expected_gradients, decimal=2)

        obj_dec._sess.close()
        tf.reset_default_graph()

    except ARTTestException as e:
        art_warning(e)
def train(num_epochs):
  
    """
    Arguments:
    epochs:  Number of epochs to run
    
    Returns: None     
    """

#   Define a graph and set it to default one 
    g_train = tf.get_default_graph();
    with g_train.as_default():
      
        tf.set_random_seed(42);
#       Initialize the model and the variables whose statistics are to be plotted
        logits, loss, acc = initialize_model(); tf.summary.scalar("Loss", loss); tf.summary.scalar("Accuracy", acc); 

#       Define a Session
        with tf.Session(graph = g_train) as sess:
#           Define the training step and iterators over the dataset
            train_step = training(loss, 1e-4);
            handle, next_element, train_iter, train_handle, val_iter, val_handle, test_iter, test_handle = get_dataset_iterators(sess); 
            lr_coll, mom_coll = lr_mom_calculator(num_epochs, 1, 5e-2, True);
      
#           Define the saver and writer which will be writing the logs at the specified location (again for Tensorboard) 
            saver = tf.train.Saver(max_to_keep = 5); merged = tf.summary.merge_all();
            train_writer = tf.summary.FileWriter(log_path + "train/", sess.graph); 
            val_writer = tf.summary.FileWriter(log_path + "val/"); sess.run([tf.global_variables_initializer()]); 

            print('Training statrted...');

            for epoch in range(1, num_epochs + 1):
          
#               Initialize the training iterator 
                sess.run(train_iter.initializer); tot_train_loss = 0; tot_train_acc = 0;
                for train_ptr in range(num_train_iters + 1):
      
                    try: X_train_batch, y_train_batch = sess.run(next_element, feed_dict = {handle: train_handle});
                    except tf.errors.OutOfRangeError: sess.run(train_iter.initializer)  
              
#                   Run the training step to update the parameters
                    _, train_loss, train_acc, summary = sess.run([train_step, loss, acc, merged], feed_dict = {X_ph: X_train_batch, 
                                                                  y_ph: y_train_batch, train_mode: True, dropout: 0.15, 
                                                                  lr_ph: lr_coll[(epoch-1)*num_train_iters + train_ptr], 
                                                                  beta1_ph: mom_coll[(epoch-1)*num_train_iters + train_ptr]})
  
                    tot_train_loss += train_loss; tot_train_acc += train_acc;
                train_writer.add_summary(summary, epoch);          
      
#               Evaluate the trained model on eval set if the condition is satisfied
                sess.run(val_iter.initializer); tot_val_loss = 0; tot_val_acc = 0;
                for val_ptr in range(num_val_iters + 1):
      
                    try: X_val_batch, y_val_batch = sess.run(next_element, feed_dict = {handle: val_handle})
                    except tf.errors.OutOfRangeError: sess.run(val_iter.initializer)

                    val_loss, val_acc, summary = sess.run([loss, acc, merged], feed_dict = {X_ph: X_val_batch, y_ph: y_val_batch, 
                                                                                            train_mode: False, dropout: 0})
                
                    tot_val_loss += val_loss; tot_val_acc += val_acc; 
                val_writer.add_summary(summary, epoch);
                
                print(str(epoch) + ' Epochs:: Train_loss: ' + str(tot_train_loss/(num_train_iters + 1)) + ', Val_loss: ' + \
                      str(tot_val_loss/(num_val_iters + 1)) + ', Train_acc: ' + str((tot_train_acc/(num_train_iters + 1))*100) \
                      + '%, Val_acc: ' + str(tot_val_acc/(num_val_iters + 1)*100) + '%')

#               Evaluate the trained model on the test set after every 5 epochs
#               NOTE: This is not introducing any leakage of statistics from train/Val set into the test set by any means, just evaluating 
#                     it on the test set after every 5 epochs to have a rough idea of what's going on.
                if epoch % 5 == 0:	
    
                    sess.run(test_iter.initializer); tot_test_loss = 0; tot_test_acc = 0;
                    for test_ptr in range(num_test_iters + 1):
          
                        try: X_test_batch, y_test_batch = sess.run(next_element, feed_dict = {handle: test_handle})
                        except tf.errors.OutOfRangeError: sess.run(test_iter.initializer)

                        test_loss, test_acc = sess.run([loss, acc], feed_dict = {X_ph: X_test_batch, y_ph: y_test_batch, 
                                                                                 train_mode: False, dropout: 0});
                    
                        tot_test_loss += test_loss; tot_test_acc += test_acc;
                    print('Test_loss: ' + str(tot_test_loss/(num_test_iters + 1)) + ', Test_acc: ' + str(tot_test_acc/(num_test_iters + 1)))
                    
#               Save the checkpoints at the specified directory!!!
#                 if(epoch % 5 == 0): saver.save(sess, log_path + 'Ckpts', global_step = epoch)

        sess.close();  """ Close the Session """
      
    tf.reset_default_graph();  """ Reset the default graph """
示例#53
0
def main():
    tf.reset_default_graph()

    TEST = True

    input_placeholder = tf.placeholder(
        tf.float32,
        shape=[None, IMAGE_WIDTH, IMAGE_HEIGHT, IMAGE_CHANNEL],
        name="input_placeholder")

    output_placeholder = tf.placeholder(tf.float32,
                                        shape=[None, 1],
                                        name="output_placeholder")

    layer_conv_1, weights_conv_1 = new_conv_layer(
        input=input_placeholder,
        num_input_channels=IMAGE_CHANNEL,
        filter_size=5,
        num_filters=64,
        pooling=2)

    layer_conv_2, weights_conv_2 = new_conv_layer(input=layer_conv_1,
                                                  num_input_channels=64,
                                                  filter_size=3,
                                                  num_filters=64,
                                                  pooling=2)

    layer_conv_3, weights_conv_3 = new_conv_layer(input=layer_conv_2,
                                                  num_input_channels=64,
                                                  filter_size=3,
                                                  num_filters=128,
                                                  pooling=2)

    layer_flat, num_features = flatten_layer(layer_conv_3)

    layer_fc_1 = new_fc_layer(input=layer_flat,
                              num_inputs=num_features,
                              num_outputs=512)

    layer_fc_1 = tf.nn.sigmoid(layer_fc_1)

    #if TEST is not True:
    #layer_fc_1 = tf.nn.dropout(layer_fc_1, 0.5)

    layer_output = new_fc_layer(layer_fc_1, num_inputs=512, num_outputs=1)

    layer_output = tf.nn.sigmoid(layer_output)

    cost = tf.reduce_sum(
        tf.squared_difference(layer_output, output_placeholder) / 2)

    optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost)

    correct_predictions = tf.equal(tf.round(layer_output), output_placeholder)

    accuracy = tf.reduce_mean(tf.cast(correct_predictions, tf.float32))

    init_g = tf.global_variables_initializer()
    init_l = tf.local_variables_initializer()

    with tf.Session() as sess:
        sess.run(init_g)
        sess.run(init_l)
        saver = tf.train.Saver()

        if TEST == False:
            train_model(sess, input_placeholder, output_placeholder, accuracy,
                        cost, optimizer)

            saver.save(sess, "./model.ckpt")
            test_model(sess, input_placeholder, output_placeholder, accuracy,
                       cost)
            f = open("./data.json", "w")
            f.write(
                json.dumps(
                    {
                        "batch_costs": train_costs,
                        "batch_accuracies": train_accuracies,
                        "test_cost": test_cost,
                        "test_accuracy": test_accuracy
                    },
                    indent=4,
                    sort_keys=True))
            f.close()
        else:
            saver.restore(sess, "./model.ckpt")
            test_model(sess, input_placeholder, output_placeholder, accuracy,
                       cost)
            
#               Get a smoothed version of the accuracy plot!!
                val_acc_collection_smooth = smooth(val_acc_collection); 
                plot_graph(learning_rate_collection, val_acc_collection_smooth, str(val), colors[ind]); 
            
#           Terminate the Session"""
            sess.close();
          
#       Reset the default graph in order to ensure that weights of the network at start are random for each Grid_search_param"""
        tf.reset_default_graph(); 
        
#   Show the plot
    plt.show()

# Run the Vanilla LR_finder
tf.reset_default_graph(); Lr_finder(epochs = 10, max_lr = 1, min_lr = 5e-2, vanilla = True);

# Run the Grid_Search_CV for wt_dec values
tf.reset_default_graph(); wt_dec_list = [1e-5, 3.18e-5, 1e-4];
Lr_finder(epochs = 10, max_lr = 1, min_lr = 5e-2, params = wt_dec_list, wt_dec_gridsearch = True)

# Run the Grid_Search_CV for Dropout values
tf.reset_default_graph(); dropout_list = [0.15, 0.3, 0.45];
Lr_finder(epochs = 10, max_lr = 1, min_lr = 5e-2, params = dropout_list, fin_wt_dec = 1e-4, dropout_gridsearch = True)

def train(num_epochs):
  
    """
    Arguments:
    epochs:  Number of epochs to run
    
示例#55
0
def main():
    data_dir = './data/cp.txt'
    text = load_data(data_dir)
    view_sentence_range = (0, 10)

    print('数据情况:')
    print('不重复单词(彩票开奖记录)的个数: {}'.format(
        len({word: None
             for word in text.split()})))
    scenes = text.split('\n\n')
    sentence_count_scene = [scene.count('\n') for scene in scenes]
    print('开奖期数: {}期'.format(int(np.average(sentence_count_scene))))

    sentences = [
        sentence for scene in scenes for sentence in scene.split('\n')
    ]
    print('行数: {}'.format(len(sentences)))
    word_count_sentence = [len(sentence.split()) for sentence in sentences]
    print('平均每行单词数: {}'.format(np.ceil(np.average(word_count_sentence))))

    print()
    print('开奖记录从 {} 到 {}:'.format(*view_sentence_range))
    print('\n'.join(
        text.split('\n')[view_sentence_range[0]:view_sentence_range[1]]))

    # Preprocess Training, Validation, and Testing Data
    preprocess_and_save_data(data_dir, create_lookup_tables)

    int_text, vocab_to_int, int_to_vocab = load_preprocess()
    '''
    num_epochs 设置训练几代。
    batch_size 是批次大小。
    rnn_size 是RNN的大小(隐藏节点的维度)。
    embed_dim 是嵌入层的维度。
    seq_length 是序列的长度,始终为1。
    learning_rate 是学习率。
    show_every_n_batches 是过多少batch以后打印训练信息。
    '''

    # Number of Epochs
    num_epochs = 25
    # Batch Size
    batch_size = 32
    # RNN Size
    rnn_size = 1000
    # Embedding Dimension Size
    embed_dim = 1000
    # Sequence Length
    seq_length = 1
    # Learning Rate
    learning_rate = 0.01
    # Show stats for every n number of batches
    show_every_n_batches = 10

    save_dir = './save'

    tf.reset_default_graph()
    train_graph = tf.Graph()
    with train_graph.as_default():
        vocab_size = len(int_to_vocab)
        input_text, targets, lr = get_inputs()
        input_data_shape = tf.shape(input_text)
        cell, initial_state = get_init_cell(input_data_shape[0], rnn_size)
        logits, final_state, embed_matrix = build_nn(cell, rnn_size,
                                                     input_text, vocab_size,
                                                     embed_dim)

        # Probabilities for generating words
        probs = tf.nn.softmax(logits, name='probs')

        # Loss function
        cost = seq2seq.sequence_loss(
            logits, targets,
            tf.ones([input_data_shape[0], input_data_shape[1]]))
        #     cost = build_loss(logits, targets, vocab_size)

        # We use the cosine distance:
        norm = tf.sqrt(tf.reduce_sum(tf.square(embed_matrix), 1,
                                     keepdims=True))
        normalized_embedding = embed_matrix / norm

        probs_embeddings = tf.nn.embedding_lookup(
            normalized_embedding,
            tf.squeeze(tf.argmax(probs, 2)))  # np.squeeze(probs.argmax(2))
        probs_similarity = tf.matmul(probs_embeddings,
                                     tf.transpose(normalized_embedding))

        y_embeddings = tf.nn.embedding_lookup(normalized_embedding,
                                              tf.squeeze(targets))
        y_similarity = tf.matmul(y_embeddings,
                                 tf.transpose(normalized_embedding))

        #     data_moments = tf.reduce_mean(y_similarity, axis=0)
        #     sample_moments = tf.reduce_mean(probs_similarity, axis=0)
        similar_loss = tf.reduce_mean(tf.abs(y_similarity - probs_similarity))
        total_loss = cost + similar_loss

        # Optimizer
        optimizer = tf.train.AdamOptimizer(lr)

        # Gradient Clipping
        gradients = optimizer.compute_gradients(total_loss)  # cost
        capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var)
                            for grad, var in gradients
                            if grad is not None]  # clip_by_norm
        train_op = optimizer.apply_gradients(capped_gradients)

        # Accuracy
        correct_pred = tf.equal(tf.argmax(probs, 2), tf.cast(
            targets,
            tf.int64))  # logits <--> probs  tf.argmax(targets, 1) <--> targets
        accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32),
                                  name='accuracy')

    batches = get_batches(int_text[:-(batch_size + 1)], batch_size, seq_length)
    test_batches = get_batches(int_text[-(batch_size + 1):], batch_size,
                               seq_length)
    top_k = 10
    topk_acc_list = []
    topk_acc = 0
    sim_topk_acc_list = []
    sim_topk_acc = 0

    range_k = 5
    floating_median_idx = 0
    floating_median_acc_range_k = 0
    floating_median_acc_range_k_list = []

    floating_median_sim_acc_range_k = 0
    floating_median_sim_acc_range_k_list = []

    losses = {'train': [], 'test': []}
    accuracies = {
        'accuracy': [],
        'topk': [],
        'sim_topk': [],
        'floating_median_acc_range_k': [],
        'floating_median_sim_acc_range_k': []
    }

    with tf.Session(graph=train_graph) as sess:
        sess.run(tf.global_variables_initializer())
        saver = tf.train.Saver()
        for epoch_i in range(num_epochs):
            state = sess.run(initial_state, {input_text: batches[0][0]})

            # 训练的迭代,保存训练损失
            for batch_i, (x, y) in enumerate(batches):
                feed = {
                    input_text: x,
                    targets: y,
                    initial_state: state,
                    lr: learning_rate
                }
                train_loss, state, _ = sess.run(
                    [total_loss, final_state, train_op], feed)  # cost
                losses['train'].append(train_loss)

                # Show every <show_every_n_batches> batches
                if (epoch_i * len(batches) +
                        batch_i) % show_every_n_batches == 0:
                    print('Epoch {:>3} Batch {:>4}/{}   train_loss = {:.3f}'.
                          format(epoch_i, batch_i, len(batches), train_loss))

            # 使用测试数据的迭代
            acc_list = []
            prev_state = sess.run(
                initial_state,
                {input_text: np.array([[1]])})  # test_batches[0][0]
            for batch_i, (x, y) in enumerate(test_batches):
                # Get Prediction
                test_loss, acc, probabilities, prev_state = sess.run(
                    [total_loss, accuracy, probs, final_state], {
                        input_text: x,
                        targets: y,
                        initial_state: prev_state
                    })  # cost

                # 保存测试损失和准确率
                acc_list.append(acc)
                losses['test'].append(test_loss)
                accuracies['accuracy'].append(acc)

                print('Epoch {:>3} Batch {:>4}/{}   test_loss = {:.3f}'.format(
                    epoch_i, batch_i, len(test_batches), test_loss))

                # 利用嵌入矩阵和生成的预测计算得到相似度矩阵sim
                valid_embedding = tf.nn.embedding_lookup(
                    normalized_embedding, np.squeeze(probabilities.argmax(2)))
                similarity = tf.matmul(valid_embedding,
                                       tf.transpose(normalized_embedding))
                sim = similarity.eval()

                # 保存预测结果的Top K准确率和与预测结果距离最近的Top K准确率
                topk_acc = 0
                sim_topk_acc = 0
                for ii in range(len(probabilities)):

                    nearest = (-sim[ii, :]).argsort()[0:top_k]
                    if y[ii] in nearest:
                        sim_topk_acc += 1

                    if y[ii] in (-probabilities[ii]).argsort()[0][0:top_k]:
                        topk_acc += 1

                topk_acc = topk_acc / len(y)
                topk_acc_list.append(topk_acc)
                accuracies['topk'].append(topk_acc)

                sim_topk_acc = sim_topk_acc / len(y)
                sim_topk_acc_list.append(sim_topk_acc)
                accuracies['sim_topk'].append(sim_topk_acc)

                # 计算真实值在预测值中的距离数据
                realInSim_distance_list = []
                realInPredict_distance_list = []
                for ii in range(len(probabilities)):
                    sim_nearest = (-sim[ii, :]).argsort()
                    idx = list(sim_nearest).index(y[ii])
                    realInSim_distance_list.append(idx)

                    nearest = (-probabilities[ii]).argsort()[0]
                    idx = list(nearest).index(y[ii])
                    realInPredict_distance_list.append(idx)

                print('真实值在预测值中的距离数据:')
                print('max distance : {}'.format(
                    max(realInPredict_distance_list)))
                print('min distance : {}'.format(
                    min(realInPredict_distance_list)))
                print('平均距离 : {}'.format(np.mean(realInPredict_distance_list)))
                print('距离中位数 : {}'.format(
                    np.median(realInPredict_distance_list)))
                print('距离标准差 : {}'.format(np.std(realInPredict_distance_list)))

                print('真实值在预测值相似向量中的距离数据:')
                print('max distance : {}'.format(max(realInSim_distance_list)))
                print('min distance : {}'.format(min(realInSim_distance_list)))
                print('平均距离 : {}'.format(np.mean(realInSim_distance_list)))
                print('距离中位数 : {}'.format(np.median(realInSim_distance_list)))
                print('距离标准差 : {}'.format(np.std(realInSim_distance_list)))
                #             sns.distplot(realInPredict_distance_list, rug=True)  #, hist=False
                # plt.hist(np.log(realInPredict_distance_list), bins=50, color='steelblue', normed=True )

                # 计算以距离中位数为中心,范围K为半径的准确率
                floating_median_sim_idx = int(
                    np.median(realInSim_distance_list))
                floating_median_sim_acc_range_k = 0

                floating_median_idx = int(
                    np.median(realInPredict_distance_list))
                floating_median_acc_range_k = 0
                for ii in range(len(probabilities)):
                    nearest_floating_median = (-probabilities[ii]).argsort(
                    )[0][floating_median_idx - range_k:floating_median_idx +
                         range_k]
                    if y[ii] in nearest_floating_median:
                        floating_median_acc_range_k += 1

                    nearest_floating_median_sim = (-sim[ii, :]).argsort(
                    )[floating_median_sim_idx -
                      range_k:floating_median_sim_idx + range_k]
                    if y[ii] in nearest_floating_median_sim:
                        floating_median_sim_acc_range_k += 1

                floating_median_acc_range_k = floating_median_acc_range_k / len(
                    y)
                floating_median_acc_range_k_list.append(
                    floating_median_acc_range_k)
                accuracies['floating_median_acc_range_k'].append(
                    floating_median_acc_range_k)

                floating_median_sim_acc_range_k = floating_median_sim_acc_range_k / len(
                    y)
                floating_median_sim_acc_range_k_list.append(
                    floating_median_sim_acc_range_k)
                accuracies['floating_median_sim_acc_range_k'].append(
                    floating_median_sim_acc_range_k)

            print(
                'Epoch {:>3} floating median sim range k accuracy {} '.format(
                    epoch_i,
                    np.mean(floating_median_sim_acc_range_k_list)))  #:.3f
            print('Epoch {:>3} floating median range k accuracy {} '.format(
                epoch_i, np.mean(floating_median_acc_range_k_list)))  #:.3f
            print('Epoch {:>3} similar top k accuracy {} '.format(
                epoch_i, np.mean(sim_topk_acc_list)))  #:.3f
            print('Epoch {:>3} top k accuracy {} '.format(
                epoch_i, np.mean(topk_acc_list)))  #:.3f
            print('Epoch {:>3} accuracy {} '.format(epoch_i,
                                                    np.mean(acc_list)))  #:.3f

        # Save Model
        saver.save(sess, save_dir)  # , global_step=epoch_i
        print('Model Trained and Saved')
        embed_mat = sess.run(normalized_embedding)

    sns.distplot(realInSim_distance_list, rug=True)
    sns.distplot(realInPredict_distance_list, rug=True)

    plt.plot(losses['train'], label='Training loss')
    plt.legend()
    _ = plt.ylim()

    plt.plot(losses['test'], label='Test loss')
    plt.legend()
    _ = plt.ylim()

    plt.plot(accuracies['accuracy'], label='Accuracy')
    plt.plot(accuracies['topk'], label='Top K')
    plt.plot(accuracies['sim_topk'], label='Similar Top K')
    plt.plot(accuracies['floating_median_acc_range_k'],
             label='Floating Median Range K Acc')
    plt.plot(accuracies['floating_median_sim_acc_range_k'],
             label='Floating Median Sim Range K Acc')
    plt.legend()
    _ = plt.ylim()

    for batch_i, (x, y) in enumerate(test_batches):
        plt.plot(y, label='Targets')
        plt.plot(np.squeeze(probabilities.argmax(2)), label='Prediction')
        plt.legend()
        _ = plt.ylim()

    # Save parameters for checkpoint
    save_params((seq_length, save_dir))

    _, vocab_to_int, int_to_vocab = load_preprocess()
    seq_length, load_dir = load_params()

    with train_graph.as_default():
        saver = tf.train.Saver()

    with tf.Session(graph=train_graph) as sess:
        # Load saved model
        loader = tf.train.import_meta_graph(load_dir + '.meta')
        loader.restore(sess, load_dir)

        #     saver.restore(sess, tf.train.latest_checkpoint('checkpoints'))
        embed_mat = sess.run(embed_matrix)

    viz_words = 1000
    tsne = TSNE()
    with train_graph.as_default():
        embed_tsne = tsne.fit_transform(embed_mat[:viz_words, :])

    fig, ax = plt.subplots(figsize=(24, 24))
    for idx in range(viz_words):
        plt.scatter(*embed_tsne[idx, :], color='steelblue')
        plt.annotate(int_to_vocab[idx],
                     (embed_tsne[idx, 0], embed_tsne[idx, 1]),
                     alpha=0.7)

    gen_length = 17
    prime_word = '202'

    loaded_graph = tf.Graph()  # loaded_graph
    with tf.Session(graph=train_graph) as sess:
        # Load saved model
        loader = tf.train.import_meta_graph(load_dir + '.meta')
        loader.restore(sess, load_dir)

        # Get Tensors from loaded model
        input_text, initial_state, final_state, probs = get_tensors(
            train_graph)  # loaded_graph

        # Sentences generation setup
        gen_sentences = [prime_word]
        prev_state = sess.run(initial_state, {input_text: np.array([[1]])})

        # Generate sentences
        for n in range(gen_length):
            # Dynamic Input
            dyn_input = [[
                vocab_to_int[word] for word in gen_sentences[-seq_length:]
            ]]
            dyn_seq_length = len(dyn_input[0])

            # Get Prediction
            probabilities, prev_state = sess.run([probs, final_state], {
                input_text: dyn_input,
                initial_state: prev_state
            })

            valid_embedding = tf.nn.embedding_lookup(normalized_embedding,
                                                     probabilities.argmax())
            valid_embedding = tf.reshape(valid_embedding,
                                         (1, len(int_to_vocab)))
            similarity = tf.matmul(valid_embedding,
                                   tf.transpose(normalized_embedding))
            sim = similarity.eval()

            pred_word = pick_word(probabilities[dyn_seq_length - 1], sim,
                                  int_to_vocab, 5, 'median')

            gen_sentences.append(pred_word)

        cp_script = ' '.join(gen_sentences)
        cp_script = cp_script.replace('\n ', '\n')
        cp_script = cp_script.replace('( ', '(')

        print(cp_script)

    int_sentences = [int(words) for words in gen_sentences]
    int_sentences = int_sentences[1:]

    val_data = [[103], [883], [939], [36], [435], [173], [572], [828], [509],
                [723], [145], [621], [535], [385], [98], [321], [427]]

    plt.plot(int_sentences, label='History')
    plt.plot(val_data, label='val_data')
    plt.legend()
    _ = plt.ylim()
示例#56
0
def train():
    s_time = time.time()
    global n_episode
    try:
        tf.reset_default_graph()
        sess = tf.InteractiveSession()
        coord = tf.train.Coordinator()

        checkpoint_dir = "./breakout-a3c-max-step"
        save_path = os.path.join(checkpoint_dir, "model.ckpt")

        if not os.path.exists(checkpoint_dir):
            os.makedirs(checkpoint_dir)
            print("Directory {} was created".format(checkpoint_dir))

        n_threads = 8
        h_size = 512
        input_shape = [84, 84, 4]
        output_dim = 3  # {0, 1, 2}
        action_offset = 1
        global_network = A3CNetwork(name="global",
                                    input_shape=input_shape,
                                    output_dim=output_dim,
                                    h_size=h_size)

        thread_list = []
        env_list = []

        for id in range(n_threads):
            env = gym.make("BreakoutDeterministic-v4")

            single_agent = Agent(env=env,
                                 session=sess,
                                 coord=coord,
                                 name="thread_{}".format(id),
                                 global_network=global_network,
                                 input_shape=input_shape,
                                 output_dim=output_dim,
                                 h_size=h_size,
                                 action_offset=action_offset)
            thread_list.append(single_agent)
            env_list.append(env)

        init = tf.global_variables_initializer()
        sess.run(init)
        if tf.train.get_checkpoint_state(os.path.dirname(save_path)):
            var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                         "global")
            saver = tf.train.Saver(var_list=var_list)
            maybe_path = tf.train.latest_checkpoint(checkpoint_dir)
            saver.restore(sess, maybe_path)
            print("Model restored to global: ", maybe_path)

            n_episode = int(
                tf.train.latest_checkpoint(checkpoint_dir).split('-')[-1])

        else:
            print("No model is found")

        for t in thread_list:
            t.start()


#         print("Ctrl + C to close")

        while True:
            time.sleep(60 * 30)
            var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                         "global")
            saver = tf.train.Saver(var_list=var_list)
            saver.save(sess, save_path, global_step=n_episode)
            print('Checkpoint Saved to {}/{}. elapsed = {}'.format(
                save_path, n_episode,
                time.time() - s_time))

    except KeyboardInterrupt:
        print("Closing threads")
        coord.request_stop()
        coord.join(thread_list)

        print("Closing environments")
        for env in env_list:
            env.close()

        sess.close()
def gamma_variance_test(x, alphas, alpha_prior, N_trials,
                        base_dir=os.getcwd()):

    # get useful numbers
    K = x.shape[0]

    # compute optimal posterior parameters
    alpha_star = alpha_prior + x
    print('alpha max = {:.2f}'.format(np.max(alpha_star)))

    # initialize gradients
    gradients = np.zeros([len(alphas), N_trials, K])

    # reset graph with new session
    tf.reset_default_graph()
    with tf.Session() as sess:

        # declare training variable
        alpha_ph = tf.placeholder(tf.float32, [1, K])

        # declare noise variable
        epsilon_ph = tf.placeholder(tf.float32, [1, K])

        # declare Gamma sampler
        sampler = NeuralInverseCDF(target=GammaCDF(base_dir=base_dir),
                                   trainable=False)

        # clamp alpha to supported value
        alpha_ph = tf.minimum(alpha_ph, sampler.target.theta_max)
        alpha_ph = tf.maximum(alpha_ph, sampler.target.theta_min)

        # route each alpha dimension through a shared neural gamma sampler
        num_vars = len(tf.global_variables())
        pi = []
        for k in range(K):
            pi.append(
                sampler.sample_operation(epsilon_ph[:, k], alpha_ph[:, k]))

        # normalize Gamma samples so they form a Dirichlet sample
        pi = tf.stack(pi, axis=-1)
        pi = pi / tf.reduce_sum(pi, axis=-1, keepdims=True)

        # compute the expected log likelihood
        ll = tf.reduce_sum(x * tf.log(pi))

        # compute the ELBO
        elbo = ll - kl_dirichlet(alpha_ph,
                                 tf.constant(alpha_prior, dtype=tf.float32))

        # compute gradient
        grad = tf.gradients(xs=[alpha_ph], ys=elbo)

        # save the list of gamma sampler variables that will need to be loaded as constants
        sampler_vars = tf.global_variables()[num_vars:]

        # restore variables (order of operations matter)
        sess.run(tf.global_variables_initializer())
        sampler.restore(sess, sampler_vars)

        # loop over the alphas
        for i in range(len(alphas)):

            # set alpha for this test
            alpha = alpha_star * np.ones([1, K])
            alpha[0, 0] = alphas[i]

            # compute the gradient over the specified number of trials
            for j in range(N_trials):
                gradients[i, j] = sess.run(grad,
                                           feed_dict={
                                               alpha_ph:
                                               alpha,
                                               epsilon_ph:
                                               np.random.random(size=(1, K))
                                           })[0]

                # print update
                a_per = 100 * (i + 1) / len(alphas)
                n_per = 100 * (j + 1) / N_trials
                update_str = 'Alphas done: {:.2f}%, Trials done: {:.2f}%'.format(
                    a_per, n_per)
                print('\r' + update_str, end='')

        print('')

    # return the gradients
    return gradients
示例#58
0
def main(flags):
    nn_utils.set_gpu(flags.GPU)
    for start_layer in flags.start_layer:
        if start_layer >= 10:
            suffix_base = 'aemo_newloss'
        else:
            suffix_base = 'aemo_newloss_up{}'.format(start_layer)
        if flags.from_scratch:
            suffix_base += '_scratch'
        for lr in flags.learn_rate:
            for run_id in range(4):
                suffix = '{}_{}'.format(suffix_base, run_id)
                tf.reset_default_graph()

                np.random.seed(run_id)
                tf.set_random_seed(run_id)

                # define network
                model = unet.UNet(flags.num_classes, flags.patch_size, suffix=suffix, learn_rate=lr,
                                  decay_step=flags.decay_step, decay_rate=flags.decay_rate,
                                  epochs=flags.epochs, batch_size=flags.batch_size)
                overlap = model.get_overlap()

                cm = collectionMaker.read_collection(raw_data_path=flags.data_dir,
                                                     field_name='aus10,aus30,aus50',
                                                     field_id='',
                                                     rgb_ext='.*rgb',
                                                     gt_ext='.*gt',
                                                     file_ext='tif',
                                                     force_run=False,
                                                     clc_name=flags.ds_name)
                cm.print_meta_data()

                file_list_train = cm.load_files(field_name='aus10,aus30', field_id='', field_ext='.*rgb,.*gt')
                file_list_valid = cm.load_files(field_name='aus50', field_id='', field_ext='.*rgb,.*gt')

                patch_list_train = patchExtractor.PatchExtractor(flags.patch_size, flags.tile_size,
                                                                 flags.ds_name + '_train_hist',
                                                                 overlap, overlap // 2). \
                    run(file_list=file_list_train, file_exts=['jpg', 'png'], force_run=False).get_filelist()
                patch_list_valid = patchExtractor.PatchExtractor(flags.patch_size, flags.tile_size,
                                                                 flags.ds_name + '_valid_hist',
                                                                 overlap, overlap // 2). \
                    run(file_list=file_list_valid, file_exts=['jpg', 'png'], force_run=False).get_filelist()
                chan_mean = cm.meta_data['chan_mean']

                train_init_op, valid_init_op, reader_op = \
                    dataReaderSegmentation.DataReaderSegmentationTrainValid(
                        flags.patch_size, patch_list_train, patch_list_valid, batch_size=flags.batch_size,
                        chan_mean=chan_mean,
                        aug_func=[reader_utils.image_flipping, reader_utils.image_rotating],
                        random=True, has_gt=True, gt_dim=1, include_gt=True, valid_mult=flags.val_mult).read_op()
                feature, label = reader_op

                model.create_graph(feature)
                if start_layer >= 10:
                    model.compile(feature, label, flags.n_train, flags.n_valid, flags.patch_size, ersaPath.PATH['model'],
                                  par_dir=flags.par_dir, loss_type='xent')
                else:
                    model.compile(feature, label, flags.n_train, flags.n_valid, flags.patch_size, ersaPath.PATH['model'],
                                  par_dir=flags.par_dir, loss_type='xent',
                                  train_var_filter=['layerup{}'.format(i) for i in range(start_layer, 10)])
                train_hook = hook.ValueSummaryHook(flags.verb_step, [model.loss, model.lr_op],
                                                   value_names=['train_loss', 'learning_rate'],
                                                   print_val=[0])
                model_save_hook = hook.ModelSaveHook(model.get_epoch_step() * flags.save_epoch, model.ckdir)
                valid_loss_hook = hook.ValueSummaryHookIters(model.get_epoch_step(), [model.loss_xent, model.loss_iou],
                                                             value_names=['valid_loss', 'IoU'], log_time=True,
                                                             run_time=model.n_valid)
                image_hook = hook.ImageValidSummaryHook(model.input_size, model.get_epoch_step(), feature, label,
                                                        model.pred,
                                                        nn_utils.image_summary, img_mean=chan_mean)
                start_time = time.time()
                if not flags.from_scratch:
                    model.load(flags.model_dir)
                model.train(train_hooks=[train_hook, model_save_hook], valid_hooks=[valid_loss_hook, image_hook],
                            train_init=train_init_op, valid_init=valid_init_op)
                print('Duration: {:.3f}'.format((time.time() - start_time) / 3600))
示例#59
0
    def test_restore_ema(self):

        # Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3
        x_data = np.random.rand(100).astype(np.float32)
        y_data = x_data * 0.1 + 0.3

        # Try to find values for W and b that compute y_data = W * x_data + b
        # (We know that W should be 0.1 and b 0.3, but TensorFlow will
        # figure that out for us.)
        W = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name='W')
        b = tf.Variable(tf.zeros([1]), name='b')
        y = W * x_data + b

        # Minimize the mean squared errors.
        loss = tf.reduce_mean(tf.square(y - y_data))
        optimizer = tf.train.GradientDescentOptimizer(0.5)
        opt_op = optimizer.minimize(loss)

        # Track the moving averages of all trainable variables.
        ema = tf.train.ExponentialMovingAverage(decay=0.9999)
        averages_op = ema.apply(tf.trainable_variables())
        with tf.control_dependencies([opt_op]):
            train_op = tf.group(averages_op)

        # Before starting, initialize the variables.  We will 'run' this first.
        init = tf.initialize_all_variables()

        saver = tf.train.Saver(tf.trainable_variables())

        # Launch the graph.
        sess = tf.Session()
        sess.run(init)

        # Fit the line.
        for _ in range(201):
            sess.run(train_op)

        w_reference = sess.run('W/ExponentialMovingAverage:0')
        b_reference = sess.run('b/ExponentialMovingAverage:0')

        saver.save(sess, os.path.join(self.tmp_dir, "model_ex1"))

        tf.reset_default_graph()

        tf.train.import_meta_graph(os.path.join(self.tmp_dir,
                                                "model_ex1.meta"))
        sess = tf.Session()

        print('------------------------------------------------------')
        for var in tf.all_variables():
            print('all variables: ' + var.op.name)
        for var in tf.trainable_variables():
            print('normal variable: ' + var.op.name)
        for var in tf.moving_average_variables():
            print('ema variable: ' + var.op.name)
        print('------------------------------------------------------')

        mode = 1
        restore_vars = {}
        if mode == 0:
            ema = tf.train.ExponentialMovingAverage(1.0)
            for var in tf.trainable_variables():
                print('%s: %s' % (ema.average_name(var), var.op.name))
                restore_vars[ema.average_name(var)] = var
        elif mode == 1:
            for var in tf.trainable_variables():
                ema_name = var.op.name + '/ExponentialMovingAverage'
                print('%s: %s' % (ema_name, var.op.name))
                restore_vars[ema_name] = var

        saver = tf.train.Saver(restore_vars, name='ema_restore')

        saver.restore(sess, os.path.join(self.tmp_dir, "model_ex1"))

        w_restored = sess.run('W:0')
        b_restored = sess.run('b:0')

        self.assertAlmostEqual(
            w_reference, w_restored,
            'Restored model modes not use the EMA filtered weight')
        self.assertAlmostEqual(
            b_reference, b_restored,
            'Restored model modes not use the EMA filtered bias')
示例#60
0
def estimate_model(model, X_train, y_train, X_val, y_val):
    tf.reset_default_graph()
    X = tf.placeholder(tf.float32, [None, 32, 32, 3], name='X')
    y = tf.placeholder(tf.int64, [None], name='y')
    learning_rate = tf.placeholder(tf.float32, shape=[])
    is_training = tf.placeholder(tf.bool)

    y_out, params_to_eval = model['model_builder'](X, y, is_training, **model)

    mean_loss = tf.reduce_mean(
        tf.losses.softmax_cross_entropy(
            onehot_labels=tf.one_hot(y, y_out.shape[1]),
            logits=y_out,
        ))

    #     optimizer = tf.train.RMSPropOptimizer(
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, )

    # batch normalization in tensorflow requires this extra dependency
    extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(extra_update_ops):
        train_step = optimizer.minimize(mean_loss)

    num_of_trainable_val = num_of_trainable()

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        print('Training')
        train_time = time.perf_counter()
        total_loss, total_correct, all_losses, all_correct = run_model(
            sess,
            X,
            y,
            is_training,
            y_out,
            mean_loss,
            X_train,
            y_train,
            model.get('num_of_epochs', 2),
            batch_size=64,
            print_every=100,
            training=train_step,
            plot_losses=True,
            learning_rate=learning_rate,
            learning_rate_value=model.get('learning_rate', 1e-3),
            part_of_dataset=model.get('part_of_dataset', 1.0),
            snapshot_name=f'{model["group"]}/{model["name"]}'.replace(
                ' ', '-').replace(':', '').lower(),
        )
        train_time = time.perf_counter() - train_time
        print('training time (seconds)', train_time)
        training = {
            'total_lost': total_loss,
            'total_correct': total_correct,
            'losses': all_losses,
            'accuracy': all_correct,
            'time': train_time,
        }

        print('Validation')
        validation_time = time.perf_counter()
        total_loss, total_correct, all_losses, all_total_correct = run_model(
            sess,
            X,
            y,
            is_training,
            y_out,
            mean_loss,
            X_val,
            y_val,
            epochs=1,
            batch_size=64,
            learning_rate=learning_rate,
            learning_rate_value=model.get('learning_rate', 1e-3),
        )
        validation_time = time.perf_counter() - validation_time
        print('validation time (seconds)', validation_time)

        validation = {
            'total_lost': total_loss,
            'total_correct': total_correct,
            'losses': all_losses,
            'accuracy': all_correct,
            'time': validation_time,
        }

        # estimate how much time it would get to prediction
        print('predict')
        validation_time = time.perf_counter()
        run_model(
            sess,
            X,
            y,
            is_training,
            y_out,
            mean_loss,
            X_val[:1],
            y_val[:1],
            epochs=1,
            batch_size=64,
            learning_rate=learning_rate,
            learning_rate_value=model.get('learning_rate', 1e-3),
        )
        validation_time = time.perf_counter() - validation_time

        predict = {
            'time': validation_time,
        }

        # eval params and store
        params = {}
        for p in params_to_eval:
            params[p] = sess.run(p,
                                 feed_dict={
                                     X: X_val[:1],
                                     y: y_val[:1],
                                     is_training: False,
                                 })

    return {
        'params': params,
        'hyper_params': model,
        'res': {
            'predict': predict,
            'training': training,
            'validation': validation,
            'num_of_trainable': num_of_trainable_val,
        },
    }