示例#1
0
def normalized_laplacian(x: tf.SparseTensor,
                         symmetric: bool = True,
                         shift: float = 0.0) -> tf.SparseTensor:
    d = tf.sparse.reduce_sum(x, axis=0)
    if symmetric:
        d = tf.math.rsqrt(d)
        row, col = tf.unstack(x.indices, axis=1)
        x = x.with_values(-x.values * tf.gather(d, row, axis=0) *
                          tf.gather(d, col, axis=0))
    else:
        x = x.with_values(-x.values / tf.gather(d, x.indices[:, 0], axis=0))
    return tf.sparse.add(
        tf.sparse.eye(x.dense_shape[0], dtype=x.dtype) * (1 + shift), x)
示例#2
0
def to_symmetric(x: tf.SparseTensor, half: bool = False) -> tf.SparseTensor:
    xt = tf.sparse.reorder(  # pylint: disable=no-value-for-parameter
        tf.sparse.transpose(x))
    x = tf.sparse.add(x, xt)
    if half:
        x = x.with_values(x.values / 2)
    return x
示例#3
0
文件: ops.py 项目: jackd/graph-tf
def normalize_sparse(A: tf.SparseTensor, symmetric: bool = True):
    row_sum = tf.sparse.reduce_sum(A, axis=1)
    tf.debugging.assert_non_negative(row_sum)
    i, j = tf.unstack(A.indices, axis=-1)
    if symmetric:
        d_vals = tf.math.rsqrt(row_sum)
        d_vals = tf.where(row_sum == 0, tf.ones_like(d_vals), d_vals)
        values = A.values * tf.gather(d_vals, i, axis=0) * tf.gather(
            d_vals, j, axis=0)
    else:
        d_vals = tf.math.reciprocal(row_sum)
        d_vals = tf.where(row_sum == 0, tf.ones_like(d_vals), d_vals)
        values = A.values * tf.gather(d_vals, i, axis=0)
    return A.with_values(values)
示例#4
0
def multi_attention_v0(features: tf.Tensor, attention: tf.Tensor,
                       adjacency: tf.SparseTensor):
    """
    Implementation using unstack / stack / sparse_dense_matmul

    Args:
        features: [Ni, H, F]
        attention: [E, H]
        adjacency: [No, Ni], E non-zero entries.

    Returns:
        [No, H, F] features.
    """
    features = [
        tf.sparse.sparse_dense_matmul(adjacency.with_values(attn), f)
        for attn, f in zip(tf.unstack(attention, axis=1),
                           tf.unstack(features, axis=1))
    ]
    return tf.stack(features, axis=1)
示例#5
0
def laplacian(x: tf.SparseTensor) -> tf.SparseTensor:
    d = tf.sparse.reduce_sum(x, axis=0)
    return tf.sparse.add(stfu.diag(d), x.with_values(-x.values))
示例#6
0
文件: ops.py 项目: jackd/graph-tf
def sparse_negate(x: tf.SparseTensor):
    return x.with_values(-x.values)
示例#7
0
文件: ops.py 项目: jackd/graph-tf
def negative(st: tf.SparseTensor) -> tf.SparseTensor:
    return st.with_values(-st.values)