示例#1
0
    def pipeline(
            self,
            dataset: tf.data.Dataset,
            input_context: tf.distribute.InputContext = None
    ) -> tf.data.Dataset:
        """Build a pipeline fetching, shuffling, and preprocessing the dataset.

    Args:
      dataset: A `tf.data.Dataset` that loads raw files.
      input_context: An optional context provided by `tf.distribute` for
        cross-replica training. If set with more than one replica, this
        function assumes `use_per_replica_batch_size=True`.

    Returns:
      A TensorFlow dataset outputting batched images and labels.
    """
        if input_context and input_context.num_input_pipelines > 1:
            dataset = dataset.shard(input_context.num_input_pipelines,
                                    input_context.input_pipeline_id)

        if self.is_training and not self.config.cache:
            dataset = dataset.repeat()

        if self.config.builder == 'records':
            # Read the data from disk in parallel
            buffer_size = 8 * 1024 * 1024  # Use 8 MiB per file
            dataset = dataset.interleave(
                lambda name: tf.data.TFRecordDataset(name,
                                                     buffer_size=buffer_size),
                cycle_length=16,
                num_parallel_calls=tf.data.experimental.AUTOTUNE)

        if self.config.cache:
            dataset = dataset.cache()

        if self.is_training:
            dataset = dataset.shuffle(self.config.shuffle_buffer_size)
            dataset = dataset.repeat()

        # Parse, pre-process, and batch the data in parallel
        if self.config.builder == 'records':
            preprocess = self.parse_record
        else:
            preprocess = self.preprocess
        dataset = dataset.map(preprocess,
                              num_parallel_calls=tf.data.experimental.AUTOTUNE)

        if input_context and self.config.num_devices > 1:
            if not self.config.use_per_replica_batch_size:
                raise ValueError(
                    'The builder does not support a global batch size with more than '
                    'one replica. Got {} replicas. Please set a '
                    '`per_replica_batch_size` and enable '
                    '`use_per_replica_batch_size=True`.'.format(
                        self.config.num_devices))

            # The batch size of the dataset will be multiplied by the number of
            # replicas automatically when strategy.distribute_datasets_from_function
            # is called, so we use local batch size here.
            dataset = dataset.batch(self.local_batch_size,
                                    drop_remainder=self.is_training)
        else:
            dataset = dataset.batch(self.global_batch_size,
                                    drop_remainder=self.is_training)

        if self.is_training:
            options = tf.data.Options()
            options.experimental_deterministic = self.config.deterministic_train
            options.experimental_slack = self.config.use_slack
            options.experimental_optimization.parallel_batch = True
            options.experimental_optimization.map_fusion = True
            options.experimental_optimization.map_vectorization.enabled = True
            options.experimental_optimization.map_parallelization = True
            dataset = dataset.with_options(options)

        # Prefetch overlaps in-feed with training
        dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)

        return dataset
示例#2
0
    def pipeline(
            self,
            dataset: tf.data.Dataset,
            input_context: tf.distribute.InputContext = None
    ) -> tf.data.Dataset:
        """Build a pipeline fetching, shuffling, and preprocessing the dataset.

    Args:
      dataset: A `tf.data.Dataset` that loads raw files.
      input_context: An optional context provided by `tf.distribute` for
        cross-replica training. This isn't necessary if using Keras
        compile/fit.

    Returns:
      A TensorFlow dataset outputting batched images and labels.
    """
        if input_context and input_context.num_input_pipelines > 1:
            dataset = dataset.shard(input_context.num_input_pipelines,
                                    input_context.input_pipeline_id)

        if self.is_training and not self.config.cache:
            dataset = dataset.repeat()

        if self.config.builder == 'records':
            # Read the data from disk in parallel
            buffer_size = 8 * 1024 * 1024  # Use 8 MiB per file
            dataset = dataset.interleave(
                lambda name: tf.data.TFRecordDataset(name,
                                                     buffer_size=buffer_size),
                cycle_length=16,
                num_parallel_calls=tf.data.experimental.AUTOTUNE)

        dataset = dataset.prefetch(self.global_batch_size)

        if self.config.cache:
            dataset = dataset.cache()

        if self.is_training:
            dataset = dataset.shuffle(self.config.shuffle_buffer_size)
            dataset = dataset.repeat()

        # Parse, pre-process, and batch the data in parallel
        if self.config.builder == 'records':
            preprocess = self.parse_record
        else:
            preprocess = self.preprocess
        dataset = dataset.map(preprocess,
                              num_parallel_calls=tf.data.experimental.AUTOTUNE)

        dataset = dataset.batch(self.batch_size,
                                drop_remainder=self.is_training)

        # Note: we could do image normalization here, but we defer it to the model
        # which can perform it much faster on a GPU/TPU
        # TODO(dankondratyuk): if we fix prefetching, we can do it here

        if self.is_training and self.config.deterministic_train is not None:
            options = tf.data.Options()
            options.experimental_deterministic = self.config.deterministic_train
            options.experimental_slack = self.config.use_slack
            options.experimental_optimization.parallel_batch = True
            options.experimental_optimization.map_fusion = True
            options.experimental_optimization.map_vectorization.enabled = True
            options.experimental_optimization.map_parallelization = True
            dataset = dataset.with_options(options)

        # Prefetch overlaps in-feed with training
        # Note: autotune here is not recommended, as this can lead to memory leaks.
        # Instead, use a constant prefetch size like the the number of devices.
        dataset = dataset.prefetch(self.config.num_devices)

        return dataset
    def pipeline(self, dataset: tf.data.Dataset) -> tf.data.Dataset:
        """Build a pipeline fetching, shuffling, and preprocessing the dataset.

    Args:
      dataset: A `tf.data.Dataset` that loads raw files.

    Returns:
      A TensorFlow dataset outputting batched images and labels.
    """
        # This can help resolve OOM issues when using only 1 GPU for training
        options = tf.data.Options()
        options.experimental_optimization.map_parallelization = (
            not self.disable_map_parallelization)
        dataset = dataset.with_options(options)

        if self._num_gpus > 1:
            # For multi-host training, we want each hosts to always process the same
            # subset of files.  Each host only sees a subset of the entire dataset,
            # allowing us to cache larger datasets in memory.
            dataset = dataset.shard(self._num_gpus, hvd.rank())

        if self.is_training:
            # Shuffle the input files.
            dataset.shuffle(buffer_size=self._file_shuffle_buffer_size)

        if self.is_training and not self._cache:
            dataset = dataset.repeat()

        # Read the data from disk in parallel
        dataset = dataset.interleave(
            tf.data.TFRecordDataset,
            cycle_length=10,
            block_length=1,
            num_parallel_calls=tf.data.experimental.AUTOTUNE)

        if self._cache:
            dataset = dataset.cache()

        if self.is_training:
            dataset = dataset.shuffle(self._shuffle_buffer_size)
            dataset = dataset.repeat()

        # Parse, pre-process, and batch the data in parallel
        preprocess = self.parse_record
        dataset = dataset.map(preprocess,
                              num_parallel_calls=tf.data.experimental.AUTOTUNE)
        if self._num_gpus > 1:
            # The batch size of the dataset will be multiplied by the number of
            # replicas automatically when strategy.distribute_datasets_from_function
            # is called, so we use local batch size here.
            dataset = dataset.batch(self.local_batch_size,
                                    drop_remainder=self.is_training)
        else:
            dataset = dataset.batch(self.global_batch_size,
                                    drop_remainder=self.is_training)

        # apply Mixup/CutMix only during training, if requested in the data pipeline,
        # otherwise they will be applied in the model module on device
        mixup_alpha = self.mixup_alpha if self.is_training else 0.0
        cutmix_alpha = self.cutmix_alpha if self.is_training else 0.0
        dataset = dataset.map(functools.partial(mixing, self.local_batch_size,
                                                mixup_alpha, cutmix_alpha,
                                                self.defer_img_mixing),
                              num_parallel_calls=64)

        # Assign static batch size dimension
        # dataset = dataset.map(
        #     functools.partial(self.set_shapes, batch_size),
        #     num_parallel_calls=tf.data.experimental.AUTOTUNE)

        # Prefetch overlaps in-feed with training
        dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)

        return dataset