示例#1
0
def test_mc_5_classes():
    actuals = tf.constant(
        [
            [1, 0, 0, 0, 0],
            [0, 0, 0, 1, 0],
            [0, 0, 0, 0, 1],
            [0, 1, 0, 0, 0],
            [0, 0, 1, 0, 0],
            [0, 0, 1, 0, 0],
            [1, 0, 0, 0, 0],
            [0, 1, 0, 0, 0],
        ],
        dtype=tf.float32,
    )

    predictions = tf.constant(
        [
            [0.85, 0, 0.15, 0, 0],
            [0, 0, 0, 1, 0],
            [0, 1, 0, 0, 0],
            [0.05, 0.90, 0.04, 0, 0.01],
            [0.10, 0, 0.81, 0.09, 0],
            [0.10, 0.045, 0, 0.81, 0.045],
            [1, 0, 0, 0, 0],
            [0, 0.85, 0, 0, 0.15],
        ],
        dtype=tf.float32,
    )
    # Initialize
    hl_obj = HammingLoss("multiclass", threshold=0.8)
    hl_obj.update_state(actuals, predictions)
    # Check results
    check_results(hl_obj, 0.25)
示例#2
0
def test_ml_5_classes():
    actuals = tf.constant(
        [
            [1, 0, 0, 0, 0],
            [0, 0, 1, 1, 0],
            [0, 1, 0, 1, 0],
            [0, 1, 1, 0, 0],
            [0, 0, 1, 1, 0],
            [0, 0, 1, 1, 0],
            [1, 0, 0, 0, 1],
            [0, 1, 1, 0, 0],
        ],
        dtype=tf.float32,
    )
    predictions = tf.constant(
        [
            [1, 0.75, 0.2, 0.55, 0],
            [0.65, 0.22, 0.97, 0.88, 0],
            [0, 1, 0, 1, 0],
            [0, 0.85, 0.9, 0.34, 0.5],
            [0.4, 0.65, 0.87, 0, 0.12],
            [0.66, 0.55, 1, 0.98, 0],
            [0.95, 0.34, 0.67, 0.65, 0.10],
            [0.45, 0.97, 0.89, 0.67, 0.46],
        ],
        dtype=tf.float32,
    )
    # Initialize
    hl_obj = HammingLoss("multilabel", threshold=0.7)
    hl_obj.update_state(actuals, predictions)
    # Check results
    check_results(hl_obj, 0.075)
示例#3
0
def test_ml_4_classes():
    actuals = tf.constant([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 0, 1]], dtype=tf.float32)
    predictions = tf.constant(
        [[0.97, 0.56, 0.83, 0.77], [0.34, 0.95, 0.7, 0.89], [0.95, 0.45, 0.23, 0.56]],
        dtype=tf.float32,
    )
    # Initialize
    hl_obj = HammingLoss("multilabel", threshold=0.8)
    hl_obj.update_state(actuals, predictions)
    # Check results
    check_results(hl_obj, 0.16666667)
示例#4
0
def test_keras_model():
    model = tf.keras.Sequential()
    model.add(layers.Dense(64, activation="relu"))
    model.add(layers.Dense(3, activation="softmax"))
    h1 = HammingLoss(mode="multiclass")
    model.compile(optimizer="rmsprop", loss="categorical_crossentropy", metrics=[h1])
    data = np.random.random((100, 10))
    labels = np.random.random((100, 3))
    model.fit(data, labels, epochs=1, batch_size=32, verbose=0)
示例#5
0
 def initialize_vars(self, mode, threshold):
     hl_obj = HammingLoss(mode=mode, threshold=threshold)
     return hl_obj
示例#6
0
 def test_config(self):
     hl_obj = HammingLoss(mode='multilabel', threshold=0.8)
     self.assertEqual(hl_obj.name, 'hamming_loss')
     self.assertEqual(hl_obj.dtype, tf.float32)
示例#7
0
			break
	return metrics


#------------------------------------------------#

#------------------------------------------------#
#                     Init                       #
#------------------------------------------------#

s_optimizer = Adam(0.0002)
train_loss = Mean(name='train_loss')
test_loss = Mean(name='test_loss')
train_accuracy = BinaryAccuracy(name='train_accuracy')
test_accuracy = BinaryAccuracy(name='test_accuracy')
hl = HammingLoss(mode='multilabel', threshold=0.5)
f1micro = F1Score(5, average='micro', name='f1_micro', threshold=0.5)
ema = ExponentialMovingAverage(0.99)
es=early(30,80)

#------------------------------------------------#
#------------------------------------------------#
#                     Load                       #
#------------------------------------------------#

# UKDALE
uk_dale = DataSet(os.path.join(PATH_TO_DATASET_DIR,'dale/ukdale.h5'))
appliances = ['kettle', 'microwave', 'dish washer', 'washing machine', 'fridge']
dh1 = house(uk_dale, appliances, 1, '2016-06-01', '2016-08-31')
dh2 = house(uk_dale, appliances, 2, '2013-06-01', '2013-08-05')
示例#8
0
def test_config():
    hl_obj = HammingLoss(mode="multilabel", threshold=0.8)
    assert hl_obj.name == "hamming_loss"
    assert hl_obj.dtype == tf.float32