示例#1
0
    eval_dataset = ASRTFRecordDataset(
        speech_featurizer=speech_featurizer,
        text_featurizer=text_featurizer,
        **vars(config.learning_config.eval_dataset_config))
else:
    train_dataset = ASRSliceDataset(
        speech_featurizer=speech_featurizer,
        text_featurizer=text_featurizer,
        **vars(config.learning_config.train_dataset_config))
    eval_dataset = ASRSliceDataset(
        speech_featurizer=speech_featurizer,
        text_featurizer=text_featurizer,
        **vars(config.learning_config.eval_dataset_config))

conformer_trainer = TransducerTrainer(
    config=config.learning_config.running_config,
    text_featurizer=text_featurizer,
    strategy=strategy)

with conformer_trainer.strategy.scope():
    # build model
    conformer = Conformer(**config.model_config,
                          vocabulary_size=text_featurizer.num_classes)
    conformer._build(speech_featurizer.shape)
    conformer.summary(line_length=120)

    optimizer_config = config.learning_config.optimizer_config
    optimizer = tf.keras.optimizers.Adam(TransformerSchedule(
        d_model=conformer.dmodel,
        warmup_steps=optimizer_config["warmup_steps"],
        max_lr=(0.05 / math.sqrt(conformer.dmodel))),
                                         beta_1=optimizer_config["beta1"],
示例#2
0
def main():
    parser = argparse.ArgumentParser(prog="Conformer Training")

    parser.add_argument("--config",
                        type=str,
                        default=DEFAULT_YAML,
                        help="The file path of model configuration file")

    parser.add_argument("--max_ckpts",
                        type=int,
                        default=10,
                        help="Max number of checkpoints to keep")

    parser.add_argument("--tbs",
                        type=int,
                        default=None,
                        help="Train batch size per replica")

    parser.add_argument("--ebs",
                        type=int,
                        default=None,
                        help="Evaluation batch size per replica")

    parser.add_argument("--acs",
                        type=int,
                        default=None,
                        help="Train accumulation steps")

    parser.add_argument("--devices",
                        type=int,
                        nargs="*",
                        default=[0],
                        help="Devices' ids to apply distributed training")

    parser.add_argument("--mxp",
                        default=False,
                        action="store_true",
                        help="Enable mixed precision")

    parser.add_argument("--subwords",
                        type=str,
                        default=None,
                        help="Path to file that stores generated subwords")

    parser.add_argument("--subwords_corpus",
                        nargs="*",
                        type=str,
                        default=[],
                        help="Transcript files for generating subwords")

    parser.add_argument("--train-dir", '-td', nargs='*', required=True)
    parser.add_argument("--dev-dir", '-dd', nargs='*', required=True)

    args = parser.parse_args()

    tf.config.optimizer.set_experimental_options(
        {"auto_mixed_precision": args.mxp})

    strategy = setup_strategy(args.devices)

    config = Config(args.config, learning=True)
    with open(config.speech_config) as f:
        speech_config = yaml.load(f, Loader=yaml.Loader)
    speech_featurizer = TFSpeechFeaturizer(speech_config)

    if args.subwords and os.path.exists(args.subwords):
        print("Loading subwords ...")
        text_featurizer = SubwordFeaturizer.load_from_file(
            config.decoder_config, args.subwords)
    else:
        print("Generating subwords ...")
        text_featurizer = SubwordFeaturizer.build_from_corpus(
            config.decoder_config, corpus_files=args.subwords_corpus)
        text_featurizer.save_to_file(args.subwords)

    train_dataset = Dataset(data_paths=args.train_dir,
                            speech_featurizer=speech_featurizer,
                            text_featurizer=text_featurizer,
                            augmentations=config.learning_config.augmentations,
                            stage="train",
                            cache=False,
                            shuffle=False)
    eval_dataset = Dataset(data_paths=args.dev_dir,
                           speech_featurizer=speech_featurizer,
                           text_featurizer=text_featurizer,
                           stage="eval",
                           cache=False,
                           shuffle=False)

    conformer_trainer = TransducerTrainer(
        config=config.learning_config.running_config,
        text_featurizer=text_featurizer,
        strategy=strategy)

    with conformer_trainer.strategy.scope():
        # build model
        conformer = Conformer(**config.model_config,
                              vocabulary_size=text_featurizer.num_classes)
        conformer._build(speech_featurizer.shape)
        conformer.summary(line_length=120)

        optimizer = tf.keras.optimizers.Adam(
            TransformerSchedule(d_model=conformer.dmodel,
                                warmup_steps=config.learning_config.
                                optimizer_config["warmup_steps"],
                                max_lr=(0.05 / math.sqrt(conformer.dmodel))),
            beta_1=config.learning_config.optimizer_config["beta1"],
            beta_2=config.learning_config.optimizer_config["beta2"],
            epsilon=config.learning_config.optimizer_config["epsilon"])

    conformer_trainer.compile(model=conformer,
                              optimizer=optimizer,
                              max_to_keep=args.max_ckpts)

    conformer_trainer.fit(train_dataset,
                          eval_dataset,
                          train_bs=args.tbs,
                          eval_bs=args.ebs,
                          train_acs=args.acs)