def compress(self, values):
     if not hasattr(self, "em"):
         self.em = ContinuousBatchedEntropyModel(noisy,
                                                 1,
                                                 compression=True)
     compressed = self.em.compress(values)
     return self.em.decompress(compressed, [100])
 def test_quantizes_to_integers_modulo_offset(self):
     noisy = uniform_noise.NoisyNormal(loc=.25, scale=10.)
     em = ContinuousBatchedEntropyModel(noisy, 1)
     x = tf.range(-20., 20.) + .25
     x_perturbed = x + tf.random.uniform(x.shape, -.49, .49)
     x_quantized = em.quantize(x_perturbed)
     self.assertAllEqual(x, x_quantized)
 def test_can_instantiate_statelessly(self):
     noisy = uniform_noise.NoisyNormal(loc=.25, scale=1.)
     em = ContinuousBatchedEntropyModel(noisy,
                                        coding_rank=1,
                                        compression=True)
     self.assertEqual(em.compression, True)
     self.assertEqual(em.stateless, False)
     self.assertAllEqual(.25, em.quantization_offset)
     em = ContinuousBatchedEntropyModel(
         compression=True,
         stateless=True,
         coding_rank=1,
         prior_shape=noisy.batch_shape,
         cdf=em.cdf,
         cdf_offset=em.cdf_offset,
         quantization_offset=em.quantization_offset,
     )
     self.assertEqual(em.compression, True)
     self.assertEqual(em.stateless, True)
     self.assertAllEqual(.25, em.quantization_offset)
     with self.assertRaises(RuntimeError):
         em.prior  # pylint:disable=pointless-statement
     self.assertEqual(em.coding_rank, 1)
     self.assertEqual(em.tail_mass, 2**-8)
     self.assertEqual(em.range_coder_precision, 12)
     self.assertEqual(em.bottleneck_dtype, tf.float32)
 def test_compression_consistent_with_quantization(self):
     noisy = uniform_noise.NoisyNormal(loc=.25, scale=10.)
     em = ContinuousBatchedEntropyModel(noisy, 1, compression=True)
     x = noisy.base.sample([100])
     x_quantized = em.quantize(x)
     x_decompressed = em.decompress(em.compress(x), [100])
     self.assertAllEqual(x_decompressed, x_quantized)
 def test_requires_coding_rank_bigger_than_prior_batch_rank(self):
     noisy = uniform_noise.NoisyLogistic(loc=0, scale=[[1], [2]])
     with self.assertRaises(ValueError):
         ContinuousBatchedEntropyModel(noisy, 0)
     with self.assertRaises(ValueError):
         ContinuousBatchedEntropyModel(noisy, 1)
     ContinuousBatchedEntropyModel(noisy, 2)
     ContinuousBatchedEntropyModel(noisy, 3)
    class Compressor(object):

      def compress(self, values):
        if not hasattr(self, "em"):
          self.em = ContinuousBatchedEntropyModel(noisy, 1, compression=True)
        compressed = self.em.compress(values)
        decompressed = self.em.decompress(compressed, [])
        return decompressed
 def test_gradients_are_straight_through(self):
     noisy = uniform_noise.NoisyNormal(loc=0, scale=1)
     em = ContinuousBatchedEntropyModel(noisy, 1)
     x = tf.range(-20., 20.)
     x_perturbed = x + tf.random.uniform(x.shape, -.49, .49)
     with tf.GradientTape() as tape:
         tape.watch(x_perturbed)
         x_quantized = em.quantize(x_perturbed)
     gradients = tape.gradient(x_quantized, x_perturbed)
     self.assertAllEqual(gradients, tf.ones_like(gradients))
 def test_high_entropy_bounds(self):
   # For high entropy distributions, the training bound should be very tight,
   # and the overhead of range coding manageable.
   noisy = uniform_noise.NoisyNormal(loc=0., scale=100.)
   em = ContinuousBatchedEntropyModel(noisy, 1, compression=True)
   x = noisy.base.sample([10000])
   bits_eval = em.bits(x, training=False)
   bits_training = em.bits(x, training=True)
   bits_compressed = 8 * len(em.compress(x).numpy())
   self.assertAllClose(bits_training, bits_eval, atol=0, rtol=5e-5)
   self.assertAllClose(bits_compressed, bits_eval, atol=0, rtol=5e-3)
示例#9
0
 def test_can_instantiate(self):
     noisy = uniform_noise.NoisyNormal(loc=0., scale=1.)
     em = ContinuousBatchedEntropyModel(noisy, 1)
     self.assertIs(em.distribution, noisy)
     self.assertEqual(em.coding_rank, 1)
     self.assertEqual(em.likelihood_bound, 1e-9)
     self.assertEqual(em.tail_mass, 2**-8)
     self.assertEqual(em.range_coder_precision, 12)
     self.assertEqual(em.dtype, noisy.dtype)
     self.assertEqual(em.quantization_offset(), 0)
     self.assertEqual(em.upper_tail(), 2.885635)
     self.assertEqual(em.lower_tail(), -2.885635)
 def test_information_bounds(self):
   # `bits(training=True)` should be greater than `bits(training=False)`
   # because it is defined as an upper bound (albeit for infinite data). The
   # actual length of the bit string should always be greater than
   # `bits(training=False)` because range coding is only asymptotically
   # optimal, and because it operates on quantized probabilities.
   for scale in 2 ** tf.linspace(-2., 7., 10):
     noisy = uniform_noise.NoisyNormal(loc=0., scale=scale)
     em = ContinuousBatchedEntropyModel(noisy, 1, compression=True)
     x = noisy.base.sample([10000])
     bits_eval = em.bits(x, training=False)
     bits_training = em.bits(x, training=True)
     bits_compressed = 8 * len(em.compress(x).numpy())
     self.assertGreater(bits_training, .9975 * bits_eval)
     self.assertGreater(bits_compressed, bits_eval)
 def test_can_instantiate(self):
     noisy = uniform_noise.NoisyNormal(loc=0., scale=1.)
     em = ContinuousBatchedEntropyModel(noisy, 1)
     self.assertIs(em.prior, noisy)
     self.assertEqual(em.coding_rank, 1)
     self.assertEqual(em.tail_mass, 2**-8)
     self.assertEqual(em.dtype, noisy.dtype)
示例#12
0
 def test_compression_works_after_serialization_no_offset(self):
     noisy = uniform_noise.NoisyNormal(loc=0, scale=5.)
     em = ContinuousBatchedEntropyModel(noisy, 1, compression=True)
     self.assertIs(em._quantization_offset, None)
     json = tf.keras.utils.serialize_keras_object(em)
     weights = em.get_weights()
     x = noisy.base.sample([100])
     x_quantized = em.quantize(x)
     x_compressed = em.compress(x)
     em = tf.keras.utils.deserialize_keras_object(json)
     em.set_weights(weights)
     self.assertAllEqual(em.compress(x), x_compressed)
     self.assertAllEqual(em.decompress(x_compressed, [100]), x_quantized)
示例#13
0
 def test_small_cdfs_for_dirac_prior_without_quantization_offset(self):
     prior = uniform_noise.NoisyNormal(loc=100 * tf.range(16.0),
                                       scale=1e-10)
     prior._quantization_offset = lambda: 0.0
     em = ContinuousBatchedEntropyModel(prior,
                                        coding_rank=2,
                                        compression=True)
     self.assertAllLessEqual(em._cdf_length, 10)
示例#14
0
 def test_small_bitcost_for_dirac_prior(self):
   prior = uniform_noise.NoisyNormal(loc=100 * tf.range(16.0), scale=1e-10)
   em = ContinuousBatchedEntropyModel(
       prior, coding_rank=2, compression=True)
   num_symbols = 1000
   source = prior.base
   x = source.sample((3, num_symbols))
   _, bits_estimate = em(x, training=True)
   bitstring = em.compress(x)
   x_decoded = em.decompress(bitstring, (num_symbols,))
   bitstring_bits = tf.reshape(
       [len(b) * 8 for b in bitstring.numpy().flatten()], bitstring.shape)
   # Max 2 bytes.
   self.assertAllLessEqual(bits_estimate, 16)
   self.assertAllLessEqual(bitstring_bits, 16)
   # Quantization noise should be between -.5 and .5
   self.assertAllLessEqual(tf.abs(x - x_decoded), 0.5)
示例#15
0
 def test_information_bounds(self, scale):
     # Off-center prior to test quantization offset heuristic. Without it, it
     # should be harder to achieve the bounds below.
     prior = uniform_noise.NoisyNormal(loc=.5, scale=scale)
     em = ContinuousBatchedEntropyModel(prior,
                                        coding_rank=1,
                                        compression=True)
     x = prior.base.sample([1000000])
     _, bits_eval = em(x, training=False)
     _, bits_training = em(x, training=True)
     bits_compressed = 8 * len(em.compress(x).numpy())
     # Asymptotically, the entropy estimate with `training=True` is an upper
     # bound on the entropy estimate with `training=False`. (With limited data,
     # fluctuations are possible.)
     with self.subTest("training bits > eval bits"):
         # Sample size is too small for the bound to be asymptotic. Increasing it
         # would make tests run too long.
         self.assertGreater(bits_training, 0.999999 * bits_eval)
     # Asymptotically, the length of the bit string should be greater than the
     # entropy estimate with `training=False` because range coding is only
     # asymptotically optimal, and because it operates on quantized
     # probabilities.
     with self.subTest("compressed bits > eval bits"):
         self.assertGreater(bits_compressed, bits_eval)
     # For low entropy distributions, the training bound can be very loose.
     if scale <= .5:
         with self.subTest("training bound loose"):
             self.assertAllClose(bits_training,
                                 bits_eval,
                                 atol=0,
                                 rtol=1.25)
             self.assertNotAllClose(bits_training,
                                    bits_eval,
                                    atol=0,
                                    rtol=1e-2)
     # For high entropy distributions, the training bound should be tight.
     if scale >= 64:
         with self.subTest("training bound tight"):
             self.assertAllClose(bits_training,
                                 bits_eval,
                                 atol=0,
                                 rtol=1e-5)
     # The overhead of range coding should always be manageable.
     with self.subTest("range coding overhead"):
         self.assertAllClose(bits_compressed, bits_eval, atol=0, rtol=5e-3)
 def test_can_instantiate(self):
   noisy = uniform_noise.NoisyNormal(loc=0., scale=1.)
   em = ContinuousBatchedEntropyModel(noisy, 1)
   self.assertIs(em.prior, noisy)
   self.assertEqual(em.coding_rank, 1)
   self.assertEqual(em.likelihood_bound, 1e-9)
   self.assertEqual(em.tail_mass, 2**-8)
   self.assertEqual(em.range_coder_precision, 12)
   self.assertEqual(em.dtype, noisy.dtype)
示例#17
0
 def test_small_cdfs_for_dirac_prior_without_quantization_offset(self):
     prior = uniform_noise.NoisyNormal(loc=100. * tf.range(16.),
                                       scale=1e-10)
     em = ContinuousBatchedEntropyModel(prior,
                                        coding_rank=2,
                                        offset_heuristic=False,
                                        compression=True)
     self.assertEqual(em.cdf_offset.shape[0], 16)
     self.assertLessEqual(em.cdf.shape[0], 16 * 6)
示例#18
0
 def test_default_kwargs_throw_error_on_compression(self):
     noisy = uniform_noise.NoisyNormal(loc=.25, scale=10.)
     em = ContinuousBatchedEntropyModel(noisy, 1)
     x = tf.zeros(10)
     with self.assertRaises(RuntimeError):
         em.compress(x)
     s = tf.zeros(10, dtype=tf.string)
     with self.assertRaises(RuntimeError):
         em.decompress(s, [10])
示例#19
0
 def test_dtypes_are_correct_with_mixed_precision(self):
     tf.keras.mixed_precision.set_global_policy("mixed_float16")
     try:
         noisy = uniform_noise.NoisyNormal(
             loc=tf.constant(0, dtype=tf.float64),
             scale=tf.constant(1, dtype=tf.float64))
         em = ContinuousBatchedEntropyModel(noisy, 1, compression=True)
         self.assertEqual(em.bottleneck_dtype, tf.float16)
         self.assertEqual(em.prior.dtype, tf.float64)
         x = tf.random.stateless_normal((2, 5),
                                        seed=(0, 1),
                                        dtype=tf.float16)
         x_tilde, bits = em(x)
         bitstring = em.compress(x)
         x_hat = em.decompress(bitstring, (5, ))
         self.assertEqual(x_hat.dtype, tf.float16)
         self.assertAllClose(x, x_hat, rtol=0, atol=.5)
         self.assertEqual(x_tilde.dtype, tf.float16)
         self.assertAllClose(x, x_tilde, rtol=0, atol=.5)
         self.assertEqual(bits.dtype, tf.float64)
         self.assertEqual(bits.shape, (2, ))
         self.assertAllGreaterEqual(bits, 0.)
     finally:
         tf.keras.mixed_precision.set_global_policy(None)
示例#20
0
 def test_requires_scalar_distributions(self):
     noisy = uniform_noise.UniformNoiseAdapter(
         tfp.distributions.MultivariateNormalDiag(loc=[-3, .2],
                                                  scale_diag=[1, 2]))
     with self.assertRaises(ValueError):
         ContinuousBatchedEntropyModel(noisy, 1)