示例#1
0
 def test_head_weights_wrong_size(self):
     head1 = head_lib.multi_label_head(n_classes=2, name='head1')
     head2 = head_lib.multi_label_head(n_classes=3, name='head2')
     with self.assertRaisesRegexp(
             ValueError,
             r'heads and head_weights must have the same size\. '
             r'Given len\(heads\): 2. Given len\(head_weights\): 1\.'):
         multi_head_lib.multi_head([head1, head2], head_weights=[1.])
示例#2
0
    def test_train_create_loss_logits_tensor_wrong_shape(self):
        """Tests create_loss with logits Tensor of the wrong shape."""
        weights1 = np.array([[1.], [2.]], dtype=np.float32)
        weights2 = np.array([[2.], [3.]])
        head1 = head_lib.multi_label_head(n_classes=2,
                                          name='head1',
                                          weight_column='weights1')
        head2 = head_lib.multi_label_head(n_classes=3,
                                          name='head2',
                                          weight_column='weights2')
        multi_head = multi_head_lib.multi_head([head1, head2],
                                               head_weights=[1., 2.])

        # logits tensor is 2x6 instead of 2x5
        logits = np.array([[-10., 10., 20., -20., 20., 70.],
                           [-15., 10., -30., 20., -20., 80.]],
                          dtype=np.float32)
        labels = {
            'head1': np.array([[1, 0], [1, 1]], dtype=np.int64),
            'head2': np.array([[0, 1, 0], [1, 1, 0]], dtype=np.int64),
        }
        with self.assertRaisesRegexp(ValueError, r'Could not split logits'):
            multi_head.create_loss(features={
                'x': np.array(((42, ), ), dtype=np.int32),
                'weights1': weights1,
                'weights2': weights2
            },
                                   mode=model_fn.ModeKeys.TRAIN,
                                   logits=logits,
                                   labels=labels)
示例#3
0
  def test_train_create_loss_logits_tensor_multi_dim(self):
    """Tests create_loss with multi-dimensional logits of shape [2, 2, 5]."""
    head1 = head_lib.regression_head(label_dimension=2, name='head1')
    head2 = head_lib.regression_head(label_dimension=3, name='head2')
    multi_head = multi_head_lib.multi_head([head1, head2])

    logits = np.array(
        [[[-1., 1., 2., -2., 2.], [-1., 1., 2., -2., 2.]],
         [[-1.5, 1.5, -2., 2., -2.], [-1.5, 1.5, -2., 2., -2.]]],
        dtype=np.float32)
    labels = {
        'head1': np.array([[[1., 0.], [1., 0.]],
                           [[1.5, 1.5], [1.5, 1.5]]], dtype=np.float32),
        'head2': np.array([[[0., 1., 0.], [0., 1., 0.]],
                           [[2., 2., 0.], [2., 2., 0.]]], dtype=np.float32),
    }
    # Loss for the first head:
    # loss1 = ((1+1)^2 + (0-1)^2 + (1+1)^2 + (0-1)^2 +
    #          (1.5+1.5)^2 + (1.5-1.5)^2 + (1.5+1.5)^2 + (1.5-1.5)^2) / 8
    #       = 3.5
    # Loss for the second head:
    # loss2 = ((0-2)^2 + (1+2)^2 + (0-2)^2 + (0-2)^2 + (1+2)^2 + (0-2)^2 +
    #          (2+2)^2 + (2-2)^2 + (0+2)^2 + (2+2)^2 + (2-2)^2 + (0+2)^2) / 12
    #       = 6.167
    expected_training_loss = 3.5 + 6.167

    training_loss = multi_head.create_loss(
        features={},
        mode=model_fn.ModeKeys.TRAIN,
        logits=logits,
        labels=labels)[0]
    tol = 1e-3
    with self.cached_session():
      self.assertAllClose(
          expected_training_loss, training_loss.eval(), rtol=tol, atol=tol)
示例#4
0
    def test_train_one_head(self):
        head1 = head_lib.multi_label_head(n_classes=2, name='head1')
        multi_head = multi_head_lib.multi_head([head1])

        logits = {
            'head1': np.array([[-10., 10.], [-15., 10.]], dtype=np.float32)
        }
        labels = {'head1': np.array([[1, 0], [1, 1]], dtype=np.int64)}
        # For large logits, sigmoid cross entropy loss is approximated as:
        # loss = labels * (logits < 0) * (-logits) +
        #        (1 - labels) * (logits > 0) * logits =>
        # expected_unweighted_loss = [[10., 10.], [15., 0.]]
        # loss = ( (10 + 10) / 2 + (15 + 0) / 2 ) / 2 = 8.75
        expected_loss = 8.75
        expected_train_result = 'my_train_op'

        def _train_op_fn(loss):
            return string_ops.string_join([
                constant_op.constant(expected_train_result),
                string_ops.as_string(loss, precision=3)
            ])

        spec = multi_head.create_estimator_spec(
            features={'x': np.array(((42, ), ), dtype=np.int32)},
            mode=model_fn.ModeKeys.TRAIN,
            logits=logits,
            labels=labels,
            train_op_fn=_train_op_fn)

        self.assertIsNotNone(spec.loss)
        self.assertEqual({}, spec.eval_metric_ops)
        self.assertIsNotNone(spec.train_op)
        self.assertIsNone(spec.export_outputs)
        _assert_no_hooks(self, spec)

        # Assert predictions, loss, train_op, and summaries.
        tol = 1e-3
        with self.cached_session() as sess:
            _initialize_variables(self, spec.scaffold)
            self.assertIsNotNone(spec.scaffold.summary_op)
            predictions = sess.run(spec.predictions)
            self.assertAllClose(
                logits['head1'],
                predictions[('head1', prediction_keys.PredictionKeys.LOGITS)])
            self.assertAllClose(
                _sigmoid(logits['head1']),
                predictions[('head1',
                             prediction_keys.PredictionKeys.PROBABILITIES)])
            loss, train_result, summary_str = sess.run(
                (spec.loss, spec.train_op, spec.scaffold.summary_op))
            self.assertAllClose(expected_loss, loss, rtol=tol, atol=tol)
            self.assertEqual(
                six.b('{0:s}{1:.3f}'.format(expected_train_result,
                                            expected_loss)), train_result)
            _assert_simple_summaries(
                self, {
                    metric_keys.MetricKeys.LOSS: expected_loss,
                    metric_keys.MetricKeys.LOSS + '/head1': expected_loss,
                }, summary_str, tol)
示例#5
0
    def test_train_create_loss_logits_tensor(self):
        """Tests create_loss with logits Tensor."""
        weights1 = np.array([[1.], [2.]], dtype=np.float32)
        weights2 = np.array([[2.], [3.]])
        head1 = head_lib.multi_label_head(n_classes=2,
                                          name='head1',
                                          weight_column='weights1')
        head2 = head_lib.multi_label_head(n_classes=3,
                                          name='head2',
                                          weight_column='weights2')
        multi_head = multi_head_lib.multi_head([head1, head2],
                                               head_weights=[1., 2.])

        logits = np.array(
            [[-10., 10., 20., -20., 20.], [-15., 10., -30., 20., -20.]],
            dtype=np.float32)
        labels = {
            'head1': np.array([[1, 0], [1, 1]], dtype=np.int64),
            'head2': np.array([[0, 1, 0], [1, 1, 0]], dtype=np.int64),
        }
        training_loss, unreduced_losses, weights, _ = multi_head.create_loss(
            features={
                'x': np.array(((42, ), ), dtype=np.int32),
                'weights1': weights1,
                'weights2': weights2
            },
            mode=model_fn.ModeKeys.TRAIN,
            logits=logits,
            labels=labels)
        tol = 1e-3
        with self.cached_session():
            # loss of the first head is [[(10 + 10) / 2], [(15 + 0) / 2]]
            # = [10, 7.5]
            # training_loss = (1 * 10 + 2 * 7.5) / 2 = 12.5
            # head-weighted unreduced_loss = 1 * [10, 7.5]
            self.assertAllClose([[10.], [7.5]],
                                unreduced_losses['head1'].eval(),
                                rtol=tol,
                                atol=tol)
            # loss of the second head is [[(20 + 20 + 20) / 3], [(30 + 0 + 0) / 3]]
            # = [20, 10]
            # training_loss = (2 * 20 + 3 * 10) / 2 = 35
            # head-weighted unreduced_loss = 2 * [20, 10]
            self.assertAllClose([[40.], [20.]],
                                unreduced_losses['head2'].eval(),
                                rtol=tol,
                                atol=tol)
            # head-weighted training_loss = 1 * 12.5 + 2 * 35 = 82.5
            self.assertAllClose(82.5, training_loss.eval(), rtol=tol, atol=tol)
            # head-weighted example weights
            self.assertAllClose([[1.], [2.]],
                                weights['head1'].eval(),
                                rtol=tol,
                                atol=tol)
            self.assertAllClose([[4.], [6.]],
                                weights['head2'].eval(),
                                rtol=tol,
                                atol=tol)
示例#6
0
    def test_predict_two_heads_logits_tensor(self):
        """Tests predict with logits as Tensor."""
        head1 = head_lib.multi_label_head(n_classes=2, name='head1')
        head2 = head_lib.multi_label_head(n_classes=3, name='head2')
        multi_head = multi_head_lib.multi_head([head1, head2])

        logits = np.array([[-1., 1., 2., -2., 2.], [-1.5, 1., -3., 2., -2.]],
                          dtype=np.float32)
        expected_logits1 = np.array([[-1., 1.], [-1.5, 1.]], dtype=np.float32)
        expected_logits2 = np.array([[2., -2., 2.], [-3., 2., -2.]],
                                    dtype=np.float32)
        expected_probabilities = {
            'head1': _sigmoid(expected_logits1),
            'head2': _sigmoid(expected_logits2),
        }

        spec = multi_head.create_estimator_spec(
            features={'x': np.array(((42, ), ), dtype=np.int32)},
            mode=model_fn.ModeKeys.PREDICT,
            logits=logits)

        self.assertItemsEqual(
            (_DEFAULT_SERVING_KEY, 'predict', 'head1', 'head1/classification',
             'head1/predict', 'head2', 'head2/classification',
             'head2/predict'), spec.export_outputs.keys())

        # Assert predictions and export_outputs.
        with self.cached_session() as sess:
            _initialize_variables(self, spec.scaffold)
            self.assertIsNone(spec.scaffold.summary_op)
            predictions = sess.run(spec.predictions)
            self.assertAllClose(
                expected_logits1,
                predictions[('head1', prediction_keys.PredictionKeys.LOGITS)])
            self.assertAllClose(
                expected_logits2,
                predictions[('head2', prediction_keys.PredictionKeys.LOGITS)])
            self.assertAllClose(
                expected_probabilities['head1'],
                predictions[('head1',
                             prediction_keys.PredictionKeys.PROBABILITIES)])
            self.assertAllClose(
                expected_probabilities['head2'],
                predictions[('head2',
                             prediction_keys.PredictionKeys.PROBABILITIES)])

            self.assertAllClose(
                expected_probabilities['head1'],
                sess.run(spec.export_outputs[_DEFAULT_SERVING_KEY].scores))
            self.assertAllClose(expected_probabilities['head1'],
                                sess.run(spec.export_outputs['head1'].scores))
            self.assertAllClose(expected_probabilities['head2'],
                                sess.run(spec.export_outputs['head2'].scores))
示例#7
0
  def test_predict_two_heads_logits_tensor_multi_dim(self):
    """Tests predict with multi-dimensional logits of shape [2, 2, 5]."""
    head1 = head_lib.regression_head(label_dimension=2, name='head1')
    head2 = head_lib.regression_head(label_dimension=3, name='head2')
    multi_head = multi_head_lib.multi_head([head1, head2])

    logits = np.array(
        [[[-1., 1., 2., -2., 2.], [-1., 1., 2., -2., 2.]],
         [[-1.5, 1., -3., 2., -2.], [-1.5, 1., -3., 2., -2.]]],
        dtype=np.float32)
    expected_logits1 = np.array(
        [[[-1., 1.], [-1., 1.]],
         [[-1.5, 1.], [-1.5, 1.]]],
        dtype=np.float32)
    expected_logits2 = np.array(
        [[[2., -2., 2.], [2., -2., 2.]],
         [[-3., 2., -2.], [-3., 2., -2.]]],
        dtype=np.float32)

    spec = multi_head.create_estimator_spec(
        features={'x': np.array(((42,),), dtype=np.int32)},
        mode=model_fn.ModeKeys.PREDICT,
        logits=logits)

    self.assertItemsEqual(
        (_DEFAULT_SERVING_KEY, 'predict', 'head1', 'head1/regression',
         'head1/predict', 'head2', 'head2/regression', 'head2/predict'),
        spec.export_outputs.keys())

    # Assert predictions and export_outputs.
    with self.cached_session() as sess:
      _initialize_variables(self, spec.scaffold)
      self.assertIsNone(spec.scaffold.summary_op)
      predictions = sess.run(spec.predictions)
      self.assertAllClose(
          expected_logits1,
          predictions[('head1', prediction_keys.PredictionKeys.PREDICTIONS)])
      self.assertAllClose(
          expected_logits2,
          predictions[('head2', prediction_keys.PredictionKeys.PREDICTIONS)])

      self.assertAllClose(
          expected_logits1,
          sess.run(spec.export_outputs[_DEFAULT_SERVING_KEY].value))
      self.assertAllClose(
          expected_logits1,
          sess.run(spec.export_outputs['head1'].value))
      self.assertAllClose(
          expected_logits2,
          sess.run(spec.export_outputs['head2'].value))
示例#8
0
  def test_train_create_loss_one_head(self):
    head1 = head_lib.multi_label_head(n_classes=2, name='head1')
    multi_head = multi_head_lib.multi_head([head1])

    logits = {'head1': np.array([[-10., 10.], [-15., 10.]], dtype=np.float32)}
    labels = {'head1': np.array([[1, 0], [1, 1]], dtype=np.int64)}
    loss = multi_head.create_loss(
        features={'x': np.array(((42,),), dtype=np.int32)},
        mode=model_fn.ModeKeys.TRAIN,
        logits=logits,
        labels=labels)[0]
    tol = 1e-3
    with self.cached_session():
      # Unreduced loss of the head is [[(10 + 10) / 2], (15 + 0) / 2]
      # (averaged over classes, averaged over examples).
      self.assertAllClose(8.75, loss.eval(), rtol=tol, atol=tol)
示例#9
0
    def test_train_one_head_with_optimizer(self):
        head1 = head_lib.multi_label_head(n_classes=2, name='head1')
        multi_head = multi_head_lib.multi_head([head1])

        logits = {
            'head1': np.array([[-10., 10.], [-15., 10.]], dtype=np.float32)
        }
        labels = {'head1': np.array([[1, 0], [1, 1]], dtype=np.int64)}
        # For large logits, sigmoid cross entropy loss is approximated as:
        # loss = labels * (logits < 0) * (-logits) +
        #        (1 - labels) * (logits > 0) * logits =>
        # expected_unweighted_loss = [[10., 10.], [15., 0.]]
        # loss = ( (10 + 10) / 2 + (15 + 0) / 2 ) / 2 = 8.75
        expected_loss = 8.75
        expected_train_result = 'my_train_op'

        class _Optimizer(object):
            def minimize(self, loss, global_step):
                del global_step
                return string_ops.string_join([
                    constant_op.constant(expected_train_result),
                    string_ops.as_string(loss, precision=3)
                ])

        spec = multi_head.create_estimator_spec(
            features={'x': np.array(((42, ), ), dtype=np.int32)},
            mode=model_fn.ModeKeys.TRAIN,
            logits=logits,
            labels=labels,
            optimizer=_Optimizer())

        tol = 1e-3
        with self.cached_session() as sess:
            _initialize_variables(self, spec.scaffold)
            predictions = sess.run(spec.predictions)
            self.assertAllClose(
                logits['head1'],
                predictions[('head1', prediction_keys.PredictionKeys.LOGITS)])
            self.assertAllClose(
                _sigmoid(logits['head1']),
                predictions[('head1',
                             prediction_keys.PredictionKeys.PROBABILITIES)])
            loss, train_result = sess.run((spec.loss, spec.train_op))
            self.assertAllClose(expected_loss, loss, rtol=tol, atol=tol)
            self.assertEqual(
                six.b('{0:s}{1:.3f}'.format(expected_train_result,
                                            expected_loss)), train_result)
示例#10
0
    def test_train_create_loss_logits_tensor_multi_dim_wrong_shape(self):
        """Tests create_loss with a multi-dimensional logits tensor of wrong shape."""
        head1 = head_lib.regression_head(label_dimension=2, name='head1')
        head2 = head_lib.regression_head(label_dimension=3, name='head2')
        multi_head = multi_head_lib.multi_head([head1, head2])

        # logits tensor is 2x2x4 instead of 2x2x5
        logits = np.array([[[-1., 1., 2., -2.], [-1., 1., 2., -2.]],
                           [[-1.5, 1.5, -2., 2.], [-1.5, 1.5, -2., 2.]]],
                          dtype=np.float32)
        labels = {
            'head1':
            np.array([[[1., 0.], [1., 0.]], [[1.5, 1.5], [1.5, 1.5]]],
                     dtype=np.float32),
            'head2':
            np.array(
                [[[0., 1., 0.], [0., 1., 0.]], [[2., 2., 0.], [2., 2., 0.]]],
                dtype=np.float32),
        }
        with self.assertRaisesRegexp(ValueError, r'Could not split logits'):
            multi_head.create_loss(features={},
                                   mode=model_fn.ModeKeys.TRAIN,
                                   logits=logits,
                                   labels=labels)
示例#11
0
 def test_head_name_missing(self):
     head1 = head_lib.multi_label_head(n_classes=2, name='head1')
     head2 = head_lib.multi_label_head(n_classes=3)
     with self.assertRaisesRegexp(
             ValueError, r'All given heads must have name specified\.'):
         multi_head_lib.multi_head([head1, head2])
示例#12
0
 def test_no_heads(self):
     with self.assertRaisesRegexp(ValueError,
                                  r'Must specify heads\. Given: \[\]'):
         multi_head_lib.multi_head(heads=[])
示例#13
0
    def test_train_two_heads_with_weights(self):
        head1 = head_lib.multi_label_head(n_classes=2, name='head1')
        head2 = head_lib.multi_label_head(n_classes=3, name='head2')
        multi_head = multi_head_lib.multi_head([head1, head2],
                                               head_weights=[1., 2.])

        logits = {
            'head1':
            np.array([[-10., 10.], [-15., 10.]], dtype=np.float32),
            'head2':
            np.array([[20., -20., 20.], [-30., 20., -20.]], dtype=np.float32),
        }
        labels = {
            'head1': np.array([[1, 0], [1, 1]], dtype=np.int64),
            'head2': np.array([[0, 1, 0], [1, 1, 0]], dtype=np.int64),
        }
        # For large logits, sigmoid cross entropy loss is approximated as:
        # loss = labels * (logits < 0) * (-logits) +
        #        (1 - labels) * (logits > 0) * logits =>
        # head1: expected_unweighted_loss = [[10., 10.], [15., 0.]]
        # loss = ( (10 + 10) / 2 + (15 + 0) / 2 ) / 2 = 8.75
        # head2: expected_unweighted_loss = [[20., 20., 20.], [30., 0., 0]]
        # loss = ( (20 + 20 + 20) / 3 + (30 + 0 + 0) / 3 ) / 2 = 15
        # Average over classes, weighted sum over batch and heads.
        expected_loss_head1 = 8.75
        expected_loss_head2 = 15.0
        expected_loss = 1. * expected_loss_head1 + 2. * expected_loss_head2
        expected_train_result = 'my_train_op'

        def _train_op_fn(loss):
            return string_ops.string_join([
                constant_op.constant(expected_train_result),
                string_ops.as_string(loss, precision=3)
            ])

        spec = multi_head.create_estimator_spec(
            features={'x': np.array(((42, ), ), dtype=np.int32)},
            mode=model_fn.ModeKeys.TRAIN,
            logits=logits,
            labels=labels,
            train_op_fn=_train_op_fn)

        self.assertIsNotNone(spec.loss)
        self.assertEqual({}, spec.eval_metric_ops)
        self.assertIsNotNone(spec.train_op)
        self.assertIsNone(spec.export_outputs)
        _assert_no_hooks(self, spec)

        # Assert predictions, loss, train_op, and summaries.
        tol = 1e-3
        with self.cached_session() as sess:
            _initialize_variables(self, spec.scaffold)
            self.assertIsNotNone(spec.scaffold.summary_op)
            loss, train_result, summary_str = sess.run(
                (spec.loss, spec.train_op, spec.scaffold.summary_op))
            self.assertAllClose(expected_loss, loss, rtol=tol, atol=tol)
            self.assertEqual(
                six.b('{0:s}{1:.3f}'.format(expected_train_result,
                                            expected_loss)), train_result)
            _assert_simple_summaries(
                self, {
                    metric_keys.MetricKeys.LOSS: expected_loss,
                    metric_keys.MetricKeys.LOSS + '/head1':
                    expected_loss_head1,
                    metric_keys.MetricKeys.LOSS + '/head2':
                    expected_loss_head2,
                }, summary_str, tol)
示例#14
0
    def test_eval_two_heads_with_weights(self):
        head1 = head_lib.multi_label_head(n_classes=2, name='head1')
        head2 = head_lib.multi_label_head(n_classes=3, name='head2')
        multi_head = multi_head_lib.multi_head([head1, head2],
                                               head_weights=[1., 2.])

        logits = {
            'head1':
            np.array([[-10., 10.], [-15., 10.]], dtype=np.float32),
            'head2':
            np.array([[20., -20., 20.], [-30., 20., -20.]], dtype=np.float32),
        }
        labels = {
            'head1': np.array([[1, 0], [1, 1]], dtype=np.int64),
            'head2': np.array([[0, 1, 0], [1, 1, 0]], dtype=np.int64),
        }
        # For large logits, sigmoid cross entropy loss is approximated as:
        # loss = labels * (logits < 0) * (-logits) +
        #        (1 - labels) * (logits > 0) * logits =>
        # head1: expected_unweighted_loss = [[10., 10.], [15., 0.]]
        # loss = ( (10 + 10) / 2 + (15 + 0) / 2 ) / 2 = 8.75
        # head2: expected_unweighted_loss = [[20., 20., 20.], [30., 0., 0]]
        # loss = ( (20 + 20 + 20) / 3 + (30 + 0 + 0) / 3 ) / 2 = 15
        expected_loss_head1 = 8.75
        expected_loss_head2 = 15.
        expected_loss = 1. * expected_loss_head1 + 2. * expected_loss_head2

        spec = multi_head.create_estimator_spec(
            features={'x': np.array(((42, ), ), dtype=np.int32)},
            mode=model_fn.ModeKeys.EVAL,
            logits=logits,
            labels=labels)

        keys = metric_keys.MetricKeys
        expected_metrics = {
            keys.LOSS + '/head1':
            expected_loss_head1,
            keys.LOSS + '/head2':
            expected_loss_head2,
            # Average loss over examples.
            keys.LOSS_MEAN + '/head1':
            expected_loss_head1,
            keys.LOSS_MEAN + '/head2':
            expected_loss_head2,
            # auc and auc_pr cannot be reliably calculated for only 4-6 samples, but
            # this assert tests that the algorithm remains consistent.
            keys.AUC + '/head1':
            0.1667,
            keys.AUC + '/head2':
            0.3333,
            keys.AUC_PR + '/head1':
            0.6667,
            keys.AUC_PR + '/head2':
            0.5000,
        }

        # Assert spec contains expected tensors.
        self.assertIsNotNone(spec.loss)
        self.assertItemsEqual(expected_metrics.keys(),
                              spec.eval_metric_ops.keys())
        self.assertIsNone(spec.train_op)
        self.assertIsNone(spec.export_outputs)
        _assert_no_hooks(self, spec)

        # Assert predictions, loss, and metrics.
        tol = 1e-3
        with self.cached_session() as sess:
            _initialize_variables(self, spec.scaffold)
            self.assertIsNone(spec.scaffold.summary_op)
            value_ops = {
                k: spec.eval_metric_ops[k][0]
                for k in spec.eval_metric_ops
            }
            update_ops = {
                k: spec.eval_metric_ops[k][1]
                for k in spec.eval_metric_ops
            }
            loss, metrics = sess.run((spec.loss, update_ops))
            self.assertAllClose(expected_loss, loss, rtol=tol, atol=tol)
            # Check results of both update (in `metrics`) and value ops.
            self.assertAllClose(expected_metrics, metrics, rtol=tol, atol=tol)
            self.assertAllClose(expected_metrics,
                                {k: value_ops[k].eval()
                                 for k in value_ops},
                                rtol=tol,
                                atol=tol)
示例#15
0
 def test_name(self):
     head1 = head_lib.multi_label_head(n_classes=2, name='head1')
     head2 = head_lib.multi_label_head(n_classes=3, name='head2')
     multi_head = multi_head_lib.multi_head([head1, head2])
     self.assertEqual('head1_head2', multi_head.name)
示例#16
0
def simple_multi_head(export_path, eval_export_path):
  """Trains and exports a simple multi-headed model."""

  def eval_input_receiver_fn():
    """Eval input receiver function."""
    serialized_tf_example = tf.compat.v1.placeholder(
        dtype=tf.string, shape=[None], name='input_example_tensor')

    language = tf.feature_column.categorical_column_with_vocabulary_list(
        'language', ['english', 'chinese', 'other'])
    age = tf.feature_column.numeric_column('age')
    english_label = tf.feature_column.numeric_column('english_label')
    chinese_label = tf.feature_column.numeric_column('chinese_label')
    other_label = tf.feature_column.numeric_column('other_label')
    all_features = [age, language, english_label, chinese_label, other_label]
    feature_spec = tf.feature_column.make_parse_example_spec(all_features)
    receiver_tensors = {'examples': serialized_tf_example}
    features = tf.io.parse_example(
        serialized=serialized_tf_example, features=feature_spec)

    labels = {
        'english_head': features['english_label'],
        'chinese_head': features['chinese_label'],
        'other_head': features['other_label'],
    }

    return export.EvalInputReceiver(
        features=features, receiver_tensors=receiver_tensors, labels=labels)

  def input_fn():
    """Train input function."""
    labels = {
        'english_head': tf.constant([[1], [1], [0], [0], [0], [0]]),
        'chinese_head': tf.constant([[0], [0], [1], [1], [0], [0]]),
        'other_head': tf.constant([[0], [0], [0], [0], [1], [1]])
    }
    features = {
        'age':
            tf.constant([[1], [2], [3], [4], [5], [6]]),
        'language':
            tf.SparseTensor(
                values=[
                    'english', 'english', 'chinese', 'chinese', 'other', 'other'
                ],
                indices=[[0, 0], [1, 0], [2, 0], [3, 0], [4, 0], [5, 0]],
                dense_shape=[6, 1]),
    }
    return features, labels

  language = tf.feature_column.categorical_column_with_vocabulary_list(
      'language', ['english', 'chinese', 'other'])
  age = tf.feature_column.numeric_column('age')
  all_features = [age, language]
  feature_spec = tf.feature_column.make_parse_example_spec(all_features)

  # TODO(b/130299739): Update with tf.estimator.BinaryClassHead and
  #   tf.estimator.MultiHead
  english_head = head.binary_classification_head(name='english_head')
  chinese_head = head.binary_classification_head(name='chinese_head')
  other_head = head.binary_classification_head(name='other_head')
  combined_head = multi_head.multi_head(
      [english_head, chinese_head, other_head])

  estimator = tf.estimator.DNNLinearCombinedEstimator(
      head=combined_head,
      dnn_feature_columns=[],
      dnn_optimizer=tf.compat.v1.train.AdagradOptimizer(learning_rate=0.01),
      dnn_hidden_units=[],
      linear_feature_columns=[language, age],
      linear_optimizer=tf.compat.v1.train.FtrlOptimizer(learning_rate=0.05))
  estimator.train(input_fn=input_fn, steps=1000)

  return util.export_model_and_eval_model(
      estimator=estimator,
      serving_input_receiver_fn=(
          tf.estimator.export.build_parsing_serving_input_receiver_fn(
              feature_spec)),
      eval_input_receiver_fn=eval_input_receiver_fn,
      export_path=export_path,
      eval_export_path=eval_export_path)