示例#1
0
def inline_block_locals(comp, variable_names=None):
    """Inlines the block variables in `comp` whitelisted by `variable_names`.

  Args:
    comp: The computation building block in which to perform the extractions.
      The names of lambda parameters and block variables in `comp` must be
      unique.
    variable_names: A Python list, tuple, or set representing the whitelist of
      variable names to inline; or None if all variables should be inlined.

  Returns:
    A new computation with the transformation applied or the original `comp`.

  Raises:
    ValueError: If `comp` contains variables with non-unique names.
  """
    py_typecheck.check_type(
        comp, computation_building_blocks.ComputationBuildingBlock)
    _check_has_unique_names(comp)
    if variable_names is not None:
        py_typecheck.check_type(variable_names, (list, tuple, set))

    def _should_inline_variable(name):
        return variable_names is None or name in variable_names

    def _should_transform(comp):
        return ((isinstance(comp, computation_building_blocks.Reference)
                 and _should_inline_variable(comp.name)) or
                (isinstance(comp, computation_building_blocks.Block) and any(
                    _should_inline_variable(name) for name, _ in comp.locals)))

    def _transform(comp, symbol_tree):
        """Returns a new transformed computation or `comp`."""
        if not _should_transform(comp):
            return comp, False
        if isinstance(comp, computation_building_blocks.Reference):
            value = symbol_tree.get_payload_with_name(comp.name).value
            # This identifies a variable bound by a Block as opposed to a Lambda.
            if value is not None:
                return value, True
            else:
                return comp, False
        elif isinstance(comp, computation_building_blocks.Block):
            variables = [(name, value) for name, value in comp.locals
                         if not _should_inline_variable(name)]
            if not variables:
                comp = comp.result
            else:
                comp = computation_building_blocks.Block(
                    variables, comp.result)
            return comp, True
        return comp, False

    symbol_tree = transformation_utils.SymbolTree(
        transformation_utils.ReferenceCounter)
    return transformation_utils.transform_postorder_with_symbol_bindings(
        comp, _transform, symbol_tree)
示例#2
0
def uniquify_references(comp):
  """Gives globally unique names to locally scoped names under `comp`.

  Args:
    comp: Instance of `computation_building_blocks.ComputationBuildingBlock`,
      representing the root of the AST in which we are hoping to rename all
      references.

  Returns:
    Returns a transformed version of comp inside of which all variable names
      are guaranteed to be unique.
  """

  int_sequence = itertools.count(start=1)

  class _RenameNode(transformation_utils.BoundVariableTracker):
    """transformation_utils.SymbolTree node for renaming References in ASTs."""

    def __init__(self, name, value):
      super(_RenameNode, self).__init__(name, value)
      py_typecheck.check_type(name, str)
      self.new_name = '_variable{}'.format(six.next(int_sequence))

    def __str__(self):
      return 'Value: {}, name: {}, new_name: {}'.format(self.value, self.name,
                                                        self.new_name)

  def transform(comp, context_tree):
    """Renames References in `comp` to unique names."""
    if isinstance(comp, computation_building_blocks.Reference):
      new_name = context_tree.get_payload_with_name(comp.name).new_name
      return computation_building_blocks.Reference(new_name,
                                                   comp.type_signature,
                                                   comp.context)
    elif isinstance(comp, computation_building_blocks.Block):
      new_locals = []
      for name, val in comp.locals:
        context_tree.walk_down_one_variable_binding()
        new_name = context_tree.get_payload_with_name(name).new_name
        new_locals.append((new_name, val))
      return computation_building_blocks.Block(new_locals, comp.result)
    elif isinstance(comp, computation_building_blocks.Lambda):
      context_tree.walk_down_one_variable_binding()
      new_name = context_tree.get_payload_with_name(
          comp.parameter_name).new_name
      return computation_building_blocks.Lambda(new_name, comp.parameter_type,
                                                comp.result)
    return comp

  rename_tree = transformation_utils.SymbolTree(_RenameNode)
  new_comp = transformation_utils.transform_postorder_with_symbol_bindings(
      comp, transform, rename_tree)
  return new_comp
示例#3
0
def uniquify_reference_names(comp):
  """Replaces all the reference names in `comp` with unique names.

  Args:
    comp: The computation building block in which to perform the replacements.

  Returns:
    Returns a transformed version of comp inside of which all variable names
      are guaranteed to be unique.
  """
  py_typecheck.check_type(comp,
                          computation_building_blocks.ComputationBuildingBlock)
  name_generator = computation_constructing_utils.unique_name_generator(None)

  class _RenameNode(transformation_utils.BoundVariableTracker):
    """transformation_utils.SymbolTree node for renaming References in ASTs."""

    def __init__(self, name, value):
      super(_RenameNode, self).__init__(name, value)
      py_typecheck.check_type(name, str)
      self.new_name = six.next(name_generator)

    def __str__(self):
      return 'Value: {}, name: {}, new_name: {}'.format(self.value, self.name,
                                                        self.new_name)

  def _transform(comp, context_tree):
    """Renames References in `comp` to unique names."""
    if isinstance(comp, computation_building_blocks.Reference):
      new_name = context_tree.get_payload_with_name(comp.name).new_name
      return computation_building_blocks.Reference(new_name,
                                                   comp.type_signature,
                                                   comp.context), True
    elif isinstance(comp, computation_building_blocks.Block):
      new_locals = []
      for name, val in comp.locals:
        context_tree.walk_down_one_variable_binding()
        new_name = context_tree.get_payload_with_name(name).new_name
        new_locals.append((new_name, val))
      return computation_building_blocks.Block(new_locals, comp.result), True
    elif isinstance(comp, computation_building_blocks.Lambda):
      context_tree.walk_down_one_variable_binding()
      new_name = context_tree.get_payload_with_name(
          comp.parameter_name).new_name
      return computation_building_blocks.Lambda(new_name, comp.parameter_type,
                                                comp.result), True
    return comp, False

  symbol_tree = transformation_utils.SymbolTree(_RenameNode)
  return transformation_utils.transform_postorder_with_symbol_bindings(
      comp, _transform, symbol_tree)
示例#4
0
def inline_block_locals(comp):
    """Inlines all block local variables.

  Since this transform is not necessarily safe, it should only be calles if
  all references under `comp` have unique names.

  Args:
    comp: Instance of `computation_building_blocks.ComputationBuildingBlock`
      whose blocks we wish to inline.

  Returns:
    A possibly different `computation_building_blocks.ComputationBuildingBlock`
    containing the same logic as `comp`, but with all blocks inlined.

  Raises:
    ValueError: If `comp` has variables with non-unique names.
  """
    py_typecheck.check_type(
        comp, computation_building_blocks.ComputationBuildingBlock)

    if not transformation_utils.has_unique_names(comp):
        raise ValueError(
            '`inline_block_locals`  should only be called after we '
            'have uniquified all '
            '`computation_building_blocks.Reference` names, since we '
            'may be moving computations with unbound references '
            'under constructs  which bind those references.')

    def _transform(comp, symbol_tree):
        """Inline transform function."""
        if isinstance(comp, computation_building_blocks.Reference):
            value_to_use = symbol_tree.get_payload_with_name(comp.name).value
            if value_to_use is not None:
                # This identifies a variable bound by a Block as opposed to a Lambda.
                return value_to_use
            else:
                return comp
        elif isinstance(comp, computation_building_blocks.Block):
            # All locals have been inlined, so the block is equivalent to its result.
            return comp.result
        return comp

    empty_tree = transformation_utils.SymbolTree(
        transformation_utils.ReferenceCounter)

    return transformation_utils.transform_postorder_with_symbol_bindings(
        comp, _transform, empty_tree)
示例#5
0
def inline_block_locals(comp):
  """Inlines all block local variables.

  Since this transform is not necessarily safe, it should only be calles if
  all references under `comp` have unique names.

  Args:
    comp: Instance of `computation_building_blocks.ComputationBuildingBlock`
      whose blocks we wish to inline.

  Returns:
    A possibly different `computation_building_blocks.ComputationBuildingBlock`
    containing the same logic as `comp`, but with all blocks inlined.

  Raises:
    ValueError: If `comp` has variables with non-unique names.
  """
  py_typecheck.check_type(comp,
                          computation_building_blocks.ComputationBuildingBlock)
  _check_has_unique_names(comp)

  def _transform(comp, symbol_tree):
    """Inline transform function."""
    if isinstance(comp, computation_building_blocks.Reference):
      value = symbol_tree.get_payload_with_name(comp.name).value
      # This identifies a variable bound by a Block as opposed to a Lambda.
      if value is not None:
        return value, True
      else:
        return comp, False
    elif isinstance(comp, computation_building_blocks.Block):
      return comp.result, True
    return comp, False

  symbol_tree = transformation_utils.SymbolTree(
      transformation_utils.ReferenceCounter)
  return transformation_utils.transform_postorder_with_symbol_bindings(
      comp, _transform, symbol_tree)
示例#6
0
def extract_nodes_consuming(tree, predicate):
  """Returns the set of AST nodes which consume nodes matching `predicate`.

  Notice we adopt the convention that a node which itself satisfies the
  predicate is in this set.

  Args:
    tree: Instance of `computation_building_blocks.ComputationBuildingBlock` to
      view as an abstract syntax tree, and construct the set of nodes in this
      tree having a dependency on nodes matching `predicate`; that is, the set
      of nodes whose value depends on evaluating nodes matching `predicate`.
    predicate: One-arg callable, accepting arguments of type
      `computation_building_blocks.ComputationBuildingBlock` and returning a
      `bool` indicating match or mismatch with the desired pattern.

  Returns:
    A `set` of `computation_building_blocks.ComputationBuildingBlock` instances
    representing the nodes in `tree` dependent on nodes matching `predicate`.
  """
  py_typecheck.check_type(tree,
                          computation_building_blocks.ComputationBuildingBlock)
  py_typecheck.check_callable(predicate)
  dependent_nodes = set()

  def _are_children_in_dependent_set(comp, symbol_tree):
    """Checks if the dependencies of `comp` are present in `dependent_nodes`."""
    if isinstance(comp, (computation_building_blocks.Intrinsic,
                         computation_building_blocks.Data,
                         computation_building_blocks.Placement,
                         computation_building_blocks.CompiledComputation)):
      return False
    elif isinstance(comp, computation_building_blocks.Lambda):
      return comp.result in dependent_nodes
    elif isinstance(comp, computation_building_blocks.Block):
      return any(x[1] in dependent_nodes
                 for x in comp.locals) or comp.result in dependent_nodes
    elif isinstance(comp, computation_building_blocks.Tuple):
      return any(x in dependent_nodes for x in comp)
    elif isinstance(comp, computation_building_blocks.Selection):
      return comp.source in dependent_nodes
    elif isinstance(comp, computation_building_blocks.Call):
      return comp.function in dependent_nodes or comp.argument in dependent_nodes
    elif isinstance(comp, computation_building_blocks.Reference):
      return _is_reference_dependent(comp, symbol_tree)

  def _is_reference_dependent(comp, symbol_tree):
    try:
      payload = symbol_tree.get_payload_with_name(comp.name)
    except NameError:
      return False
    # The postorder traversal ensures that we process any
    # bindings before we process the reference to those bindings
    return payload.value in dependent_nodes

  def _populate_dependent_set(comp, symbol_tree):
    """Populates `dependent_nodes` with all nodes dependent on `predicate`."""
    if predicate(comp):
      dependent_nodes.add(comp)
    elif _are_children_in_dependent_set(comp, symbol_tree):
      dependent_nodes.add(comp)
    return comp, False

  symbol_tree = transformation_utils.SymbolTree(
      transformation_utils.ReferenceCounter)
  transformation_utils.transform_postorder_with_symbol_bindings(
      tree, _populate_dependent_set, symbol_tree)
  return dependent_nodes