def test_generator_grad_norm_progress(self): if tf.executing_eagerly(): # tf.placeholder() is not compatible with eager execution. return stable_stage_num_images = 2 transition_stage_num_images = 3 current_image_id_ph = tf.compat.v1.placeholder(tf.int32, []) progress = networks.compute_progress( current_image_id_ph, stable_stage_num_images, transition_stage_num_images, num_blocks=3) z = tf.random.normal([2, 10], dtype=tf.float32) x, _ = networks.generator( z, progress, _num_filters_stub, networks.ResolutionSchedule( start_resolutions=(4, 4), scale_base=2, num_resolutions=3)) fake_loss = tf.reduce_sum(input_tensor=tf.square(x)) grad_norms = [ _get_grad_norm( fake_loss, tf.compat.v1.trainable_variables('.*/progressive_gan_block_1/.*')), _get_grad_norm( fake_loss, tf.compat.v1.trainable_variables('.*/progressive_gan_block_2/.*')), _get_grad_norm( fake_loss, tf.compat.v1.trainable_variables('.*/progressive_gan_block_3/.*')) ] grad_norms_output = None with self.cached_session(use_gpu=True) as sess: sess.run(tf.compat.v1.global_variables_initializer()) x1_np = sess.run(x, feed_dict={current_image_id_ph: 0.12}) x2_np = sess.run(x, feed_dict={current_image_id_ph: 1.8}) grad_norms_output = np.array([ sess.run(grad_norms, feed_dict={current_image_id_ph: i}) for i in range(15) # total num of images ]) self.assertEqual((2, 16, 16, 3), x1_np.shape) self.assertEqual((2, 16, 16, 3), x2_np.shape) # The gradient of block_1 is always on. self.assertEqual( np.argmax(grad_norms_output[:, 0] > 0), 0, 'gradient norms {} for block 1 is not always on'.format( grad_norms_output[:, 0])) # The gradient of block_2 is on after 1 stable stage. self.assertEqual( np.argmax(grad_norms_output[:, 1] > 0), 3, 'gradient norms {} for block 2 is not on at step 3'.format( grad_norms_output[:, 1])) # The gradient of block_3 is on after 2 stable stage + 1 transition stage. self.assertEqual( np.argmax(grad_norms_output[:, 2] > 0), 8, 'gradient norms {} for block 3 is not on at step 8'.format( grad_norms_output[:, 2]))
def _generator_fn(z): """Builds generator network.""" to_rgb_act = tf.tanh if kwargs['to_rgb_use_tanh_activation'] else None return networks.generator(z, progress, _num_filters_fn, resolution_schedule, num_blocks=num_blocks, kernel_size=kernel_size, colors=colors, to_rgb_activation=to_rgb_act)