def test_video_predict(): model = ResNet50(weights='imagenet') x = video_io.VideoDataset(video_path).batch(1).map( lambda x: preprocess_input(image.resize(x, (224, 224)))) y = model.predict(x) p = decode_predictions(y, top=1) assert len(p) == 166
def test_video_dataset(): """test_video_dataset""" num_repeats = 2 video_dataset = video_io.VideoDataset([video_path]).repeat(num_repeats) i = 0 for v in video_dataset: assert v.shape == (320, 560, 3) i += 1 assert i == 166 * num_repeats
def test_video_dataset(): num_repeats = 2 dataset = video_io.VideoDataset([video_path]).repeat(num_repeats) iterator = dataset.make_initializable_iterator() init_op = iterator.initializer get_next = iterator.get_next() with tensorflow.compat.v1.Session() as sess: sess.run(init_op) for _ in range(num_repeats): for _ in range(166): v = sess.run(get_next) assert v.shape == (320, 560, 3) with pytest.raises(errors.OutOfRangeError): sess.run(get_next)