示例#1
0
def create_calibrated_linear(feature_columns, config, quantiles_dir):
    feature_names = [fc.name for fc in feature_columns]
    hparams = tfl.CalibratedLinearHParams(feature_names=feature_names,
                                          num_keypoints=200,
                                          learning_rate=lr)
    hparams.set_feature_param("feature1", "monotonicity", 1)
    return tfl.calibrated_linear_regressor(feature_columns=feature_columns,
                                           model_dir=config.model_dir,
                                           config=config,
                                           hparams=hparams,
                                           quantiles_dir=quantiles_dir)
示例#2
0
def create_calibrated_linear(feature_columns, config, quantiles_dir):
    feature_names = [fc.name for fc in feature_columns]
    hparams = tfl.CalibratedLinearHParams(feature_names=feature_names,
                                          num_keypoints=200,
                                          learning_rate=1e-4)
    hparams.parse(FLAGS.hparams)
    hparams.set_feature_param("capital_gain", "calibration_l2_laplacian_reg",
                              4.0e-3)
    _pprint_hparams(hparams)
    return tfl.calibrated_linear_classifier(feature_columns=feature_columns,
                                            model_dir=config.model_dir,
                                            config=config,
                                            hparams=hparams,
                                            quantiles_dir=quantiles_dir)