示例#1
0
    def test_initialize_without_with_block(self):
        writer = mt.Writer(test_utils.load_file(_AUDIO_CLASSIFICATION_MODEL),
                           model_name='test_model',
                           model_description='test_description')

        # Calling `add_classification_output` outside the `with` block fails.
        with self.assertRaisesRegex(AttributeError, '_temp_folder'):
            writer.add_classification_output(mt.Labels().add(['cat', 'dog']))

        writer.__enter__()
        writer.add_classification_output(mt.Labels().add(['cat', 'dog']))
        writer.__exit__(*sys.exc_info())

        # Calling `add_classification_output` after `with` block closes also fails.
        with self.assertRaisesRegex(AttributeError, '_temp_folder'):
            writer.add_classification_output(mt.Labels().add(['cat', 'dog']))
示例#2
0
 def test_category_name(self):
     labels = mt.Labels()
     self.assertEqual(
         labels.add(['a', 'b'], use_as_category_name=True)._labels,
         [(None, 'labels.txt', ['a', 'b'])])
     # Overwrite categories
     self.assertEqual(
         labels.add(['new_a', 'new_b'], use_as_category_name=True)._labels,
         [(None, 'labels.txt', ['new_a', 'new_b'])])
示例#3
0
    def test_locale(self):
        labels = mt.Labels()

        # Add from file.
        en_filepath = self.create_tempfile().full_path
        with open(en_filepath, 'w') as f:
            f.write('a\nb')
        labels.add_from_file(en_filepath, 'en')

        # Customized file name
        labels.add(['A', 'B'], 'fr', exported_filename='my_file.txt')
        self.assertEqual(labels._labels, [
            ('en', 'labels_en.txt', ['a', 'b']),
            ('fr', 'my_file.txt', ['A', 'B']),
        ])

        # Add category name, which should be the first file in the list.
        labels.add(['aa', 'bb'], 'cn', use_as_category_name=True)
        self.assertEqual(labels._labels, [
            ('cn', 'labels_cn.txt', ['aa', 'bb']),
            ('en', 'labels_en.txt', ['a', 'b']),
            ('fr', 'my_file.txt', ['A', 'B']),
        ])
示例#4
0
    def test_image_classifier(self):
        with mt.Writer(
                test_utils.load_file(_IMAGE_CLASSIFIER_MODEL),
                model_name='image_classifier',
                model_description='Imagenet classification model') as writer:
            out_dir = self.create_tempdir()
            writer.add_image_input(
                norm_mean=[127.5, 127.5, 127.5],
                norm_std=[127.5, 127.5, 127.5],
                color_space_type=mt.Writer.color_space_types.RGB)
            writer.add_classification_output(mt.Labels().add(['a', 'b', 'c']))
            _, metadata_json = writer.populate(
                os.path.join(out_dir, 'model.tflite'),
                os.path.join(out_dir, 'metadat.json'))
            self.assertEqual(
                metadata_json, """{
  "name": "image_classifier",
  "description": "Imagenet classification model",
  "subgraph_metadata": [
    {
      "input_tensor_metadata": [
        {
          "name": "image",
          "description": "Input image to be processed.",
          "content": {
            "content_properties_type": "ImageProperties",
            "content_properties": {
              "color_space": "RGB"
            }
          },
          "process_units": [
            {
              "options_type": "NormalizationOptions",
              "options": {
                "mean": [
                  127.5,
                  127.5,
                  127.5
                ],
                "std": [
                  127.5,
                  127.5,
                  127.5
                ]
              }
            }
          ],
          "stats": {
            "max": [
              1.0,
              1.0,
              1.0
            ],
            "min": [
              -1.0,
              -1.0,
              -1.0
            ]
          }
        }
      ],
      "output_tensor_metadata": [
        {
          "name": "score",
          "description": "Score of the labels respectively",
          "content": {
            "content_properties_type": "FeatureProperties",
            "content_properties": {
            }
          },
          "stats": {
            "max": [
              1.0
            ],
            "min": [
              0.0
            ]
          },
          "associated_files": [
            {
              "name": "labels.txt",
              "description": "Labels for categories that the model can recognize.",
              "type": "TENSOR_AXIS_LABELS"
            }
          ]
        }
      ]
    }
  ],
  "min_parser_version": "1.0.0"
}
""")
示例#5
0
    def test_audio_classifier_with_locale_and_score_calibration(self):
        with mt.Writer(
                test_utils.load_file(_AUDIO_CLASSIFICATION_MODEL),
                model_name='audio_classifier',
                model_description='Classify the input audio clip') as writer:
            out_dir = self.create_tempdir()
            writer.add_audio_input(sample_rate=16000, channels=1)
            writer.add_classification_output(
                mt.Labels().add(['/id1', '/id2'],
                                use_as_category_name=True).add(
                                    ['sound1', 'sound2'],
                                    'en').add(['son1', 'son2'], 'fr'),
                score_calibration=mt.ScoreCalibration(
                    mt.ScoreCalibration.transformation_types.INVERSE_LOGISTIC,
                    [
                        mt.CalibrationParameter(1., 2., 3., None),
                        mt.CalibrationParameter(1., 2., 3., 4.),
                    ],
                    default_score=0.5))
            _, metadata_json = writer.populate(
                os.path.join(out_dir, 'model.tflite'),
                os.path.join(out_dir, 'metadata.tflite'))
            self.assertEqual(
                metadata_json, """{
  "name": "audio_classifier",
  "description": "Classify the input audio clip",
  "subgraph_metadata": [
    {
      "input_tensor_metadata": [
        {
          "name": "audio",
          "description": "Input audio clip to be processed.",
          "content": {
            "content_properties_type": "AudioProperties",
            "content_properties": {
              "sample_rate": 16000,
              "channels": 1
            }
          },
          "stats": {
          }
        }
      ],
      "output_tensor_metadata": [
        {
          "name": "score",
          "description": "Score of the labels respectively",
          "content": {
            "content_properties_type": "FeatureProperties",
            "content_properties": {
            }
          },
          "process_units": [
            {
              "options_type": "ScoreCalibrationOptions",
              "options": {
                "score_transformation": "INVERSE_LOGISTIC",
                "default_score": 0.5
              }
            }
          ],
          "stats": {
            "max": [
              1.0
            ],
            "min": [
              0.0
            ]
          },
          "associated_files": [
            {
              "name": "labels.txt",
              "description": "Labels for categories that the model can recognize.",
              "type": "TENSOR_AXIS_LABELS"
            },
            {
              "name": "labels_en.txt",
              "description": "Labels for categories that the model can recognize.",
              "type": "TENSOR_AXIS_LABELS",
              "locale": "en"
            },
            {
              "name": "labels_fr.txt",
              "description": "Labels for categories that the model can recognize.",
              "type": "TENSOR_AXIS_LABELS",
              "locale": "fr"
            },
            {
              "name": "score_calibration.txt",
              "description": "Contains sigmoid-based score calibration parameters. The main purposes of score calibration is to make scores across classes comparable, so that a common threshold can be used for all output classes.",
              "type": "TENSOR_AXIS_SCORE_CALIBRATION"
            }
          ]
        }
      ]
    }
  ],
  "min_parser_version": "1.3.0"
}
""")
示例#6
0
    def test_audio_classifier_with_locale(self):
        with mt.Writer(
                test_utils.load_file(_AUDIO_CLASSIFICATION_MODEL),
                model_name='audio_classifier',
                model_description='Classify the input audio clip') as writer:
            out_dir = self.create_tempdir()
            writer.add_audio_input(sample_rate=16000, channels=1)
            writer.add_classification_output(mt.Labels().add(
                ['/id1', '/id2'],
                use_as_category_name=True).add(['sound1', 'sound2'],
                                               'en').add(['son1', 'son2'],
                                                         'fr'))
            _, metadata_json = writer.populate(
                os.path.join(out_dir, 'model.tflite'),
                os.path.join(out_dir, 'metadata.tflite'))
            self.assertEqual(
                metadata_json, """{
  "name": "audio_classifier",
  "description": "Classify the input audio clip",
  "subgraph_metadata": [
    {
      "input_tensor_metadata": [
        {
          "name": "audio",
          "description": "Input audio clip to be processed.",
          "content": {
            "content_properties_type": "AudioProperties",
            "content_properties": {
              "sample_rate": 16000,
              "channels": 1
            }
          },
          "stats": {
          }
        }
      ],
      "output_tensor_metadata": [
        {
          "name": "score",
          "description": "Score of the labels respectively",
          "content": {
            "content_properties_type": "FeatureProperties",
            "content_properties": {
            }
          },
          "stats": {
            "max": [
              1.0
            ],
            "min": [
              0.0
            ]
          },
          "associated_files": [
            {
              "name": "labels.txt",
              "description": "Labels for categories that the model can recognize.",
              "type": "TENSOR_AXIS_LABELS"
            },
            {
              "name": "labels_en.txt",
              "description": "Labels for categories that the model can recognize.",
              "type": "TENSOR_AXIS_LABELS",
              "locale": "en"
            },
            {
              "name": "labels_fr.txt",
              "description": "Labels for categories that the model can recognize.",
              "type": "TENSOR_AXIS_LABELS",
              "locale": "fr"
            }
          ]
        }
      ]
    }
  ],
  "min_parser_version": "1.3.0"
}
""")