def _makeEvalResults(self): result_a = model_eval_lib.EvalResult( slicing_metrics=self._makeTestData(), plots=None, config=config.EvalConfig(), data_location=self.data_location_1, file_format='tfrecords', model_location=self.model_location_1) result_b = model_eval_lib.EvalResult( slicing_metrics=[self.result_c2], plots=None, config=config.EvalConfig(), data_location=self.full_data_location_2, file_format='tfrecords', model_location=self.full_model_location_2) return model_eval_lib.EvalResults([result_a, result_b], constants.MODEL_CENTRIC_MODE)
def _makeEvalResults(self): result_a = model_eval_lib.EvalResult( slicing_metrics=self._makeTestData(), plots=None, config=model_eval_lib.EvalConfig( example_weight_metric_key=None, slice_spec=None, data_location=self.data_location_1, model_location=self.model_location_1)) result_b = model_eval_lib.EvalResult( slicing_metrics=[self.result_c2], plots=None, config=model_eval_lib.EvalConfig( example_weight_metric_key=None, slice_spec=None, data_location=self.full_data_location_2, model_location=self.full_model_location_2)) return model_eval_lib.EvalResults([result_a, result_b], constants.MODEL_CENTRIC_MODE)
def _makeEvalResult(self, slices=((), (('slice', '1'), )), metrics_names=('metrics1', 'metrics2')): metrics = {'': {'': {}}} for metrics_name in metrics_names: metrics[''][''][metrics_name] = {'double_value': {'value': 0.5}} slicing_metrics = [(s, metrics) for s in slices] return model_eval_lib.EvalResult(slicing_metrics=slicing_metrics, plots=None, config=None)
def _makeEvalResults(self): result_a = model_eval_lib.EvalResult( slicing_metrics=self._makeTestData(), plots=None, config=config.EvalConfig( input_data_specs=[ config.InputDataSpec(location=self.data_location_1) ], model_specs=[config.ModelSpec(location=self.model_location_1) ])) result_b = model_eval_lib.EvalResult( slicing_metrics=[self.result_c2], plots=None, config=config.EvalConfig( input_data_specs=[ config.InputDataSpec(location=self.full_data_location_2) ], model_specs=[ config.ModelSpec(location=self.full_model_location_2) ])) return model_eval_lib.EvalResults([result_a, result_b], constants.MODEL_CENTRIC_MODE)