def run_trained_attack(attack_input: AttackInputData, attack_type: AttackType): """Classification attack done by ML models.""" attacker = None if attack_type == AttackType.LOGISTIC_REGRESSION: attacker = models.LogisticRegressionAttacker() elif attack_type == AttackType.MULTI_LAYERED_PERCEPTRON: attacker = models.MultilayerPerceptronAttacker() elif attack_type == AttackType.RANDOM_FOREST: attacker = models.RandomForestAttacker() elif attack_type == AttackType.K_NEAREST_NEIGHBORS: attacker = models.KNearestNeighborsAttacker() else: raise NotImplementedError('Attack type %s not implemented yet.' % attack_type) prepared_attacker_data = models.create_attacker_data(attack_input) attacker.train_model(prepared_attacker_data.features_train, prepared_attacker_data.is_training_labels_train) # Run the attacker on (permuted) test examples. predictions_test = attacker.predict(prepared_attacker_data.features_test) # Generate ROC curves with predictions. fpr, tpr, thresholds = metrics.roc_curve( prepared_attacker_data.is_training_labels_test, predictions_test) roc_curve = RocCurve(tpr=tpr, fpr=fpr, thresholds=thresholds) return SingleAttackResult(slice_spec=_get_slice_spec(attack_input), attack_type=attack_type, roc_curve=roc_curve)
def test_create_attacker_data_loss_and_logits(self): attack_input = AttackInputData(logits_train=np.array([[1, 2], [5, 6]]), logits_test=np.array([[10, 11], [14, 15]]), loss_train=np.array([3, 7]), loss_test=np.array([12, 16])) attacker_data = models.create_attacker_data(attack_input, 0.25) self.assertLen(attacker_data.features_test, 1) self.assertLen(attacker_data.features_train, 3) for i, feature in enumerate(attacker_data.features_train): self.assertLen(feature, 3) # each feature has two logits and one loss expected = feature[:2] not in attack_input.logits_train self.assertEqual(attacker_data.is_training_labels_train[i], expected)
def _run_trained_attack(attack_input: AttackInputData, attack_type: AttackType, balance_attacker_training: bool = True): """Classification attack done by ML models.""" attacker = None if attack_type == AttackType.LOGISTIC_REGRESSION: attacker = models.LogisticRegressionAttacker() elif attack_type == AttackType.MULTI_LAYERED_PERCEPTRON: attacker = models.MultilayerPerceptronAttacker() elif attack_type == AttackType.RANDOM_FOREST: attacker = models.RandomForestAttacker() elif attack_type == AttackType.K_NEAREST_NEIGHBORS: attacker = models.KNearestNeighborsAttacker() else: raise NotImplementedError('Attack type %s not implemented yet.' % attack_type) prepared_attacker_data = models.create_attacker_data( attack_input, balance=balance_attacker_training) attacker.train_model(prepared_attacker_data.features_train, prepared_attacker_data.is_training_labels_train) # Run the attacker on (permuted) test examples. predictions_test = attacker.predict(prepared_attacker_data.features_test) # Generate ROC curves with predictions. fpr, tpr, thresholds = metrics.roc_curve( prepared_attacker_data.is_training_labels_test, predictions_test) roc_curve = RocCurve(tpr=tpr, fpr=fpr, thresholds=thresholds) # NOTE: In the current setup we can't obtain membership scores for all # samples, since some of them were used to train the attacker. This can be # fixed by training several attackers to ensure each sample was left out # in exactly one attacker (basically, this means performing cross-validation). # TODO(b/175870479): Implement membership scores for predicted attackers. return SingleAttackResult(slice_spec=_get_slice_spec(attack_input), data_size=prepared_attacker_data.data_size, attack_type=attack_type, roc_curve=roc_curve)
def test_create_attacker_data_loss_only(self): attack_input = AttackInputData(loss_train=np.array([1]), loss_test=np.array([2])) attacker_data = models.create_attacker_data(attack_input, 0.5) self.assertLen(attacker_data.features_test, 1) self.assertLen(attacker_data.features_train, 1)