示例#1
0
 def testScalarCongruency(self):
     bijector_test_util.assert_scalar_congruency(tfb.MoyalCDF(loc=0.3,
                                                              scale=20.),
                                                 lower_x=1.,
                                                 upper_x=100.,
                                                 eval_func=self.evaluate,
                                                 rtol=0.05)
示例#2
0
 def testVariableScale(self):
   x = tf.Variable(1.)
   b = tfb.MoyalCDF(loc=0., scale=x, validate_args=True)
   self.evaluate(x.initializer)
   self.assertIs(x, b.scale)
   self.assertEqual((), self.evaluate(b.forward(-3.)).shape)
   with self.assertRaisesOpError("Argument `scale` must be positive."):
     with tf.control_dependencies([x.assign(-1.)]):
       self.evaluate(b.forward(-3.))
示例#3
0
 def testBijectiveAndFinite(self):
     bijector = tfb.MoyalCDF(loc=0., scale=3.0, validate_args=True)
     x = np.linspace(-10., 10., num=10).astype(np.float32)
     y = np.linspace(0.01, 0.99, num=10).astype(np.float32)
     bijector_test_util.assert_bijective_and_finite(bijector,
                                                    x,
                                                    y,
                                                    eval_func=self.evaluate,
                                                    event_ndims=0,
                                                    rtol=1e-3)
示例#4
0
 def testBijector(self):
   loc = 0.3
   scale = 5.
   bijector = tfb.MoyalCDF(loc=loc, scale=scale, validate_args=True)
   self.assertStartsWith(bijector.name, "moyal")
   x = np.array([[[-3.], [0.], [0.5], [4.2], [12.]]], dtype=np.float32)
   # Moyal distribution
   moyal_dist = stats.moyal(loc=loc, scale=scale)
   y = moyal_dist.cdf(x).astype(np.float32)
   self.assertAllClose(y, self.evaluate(bijector.forward(x)))
   self.assertAllClose(x, self.evaluate(bijector.inverse(y)),
                       atol=1e-5, rtol=1e-5)
   self.assertAllClose(
       np.squeeze(moyal_dist.logpdf(x), axis=-1),
       self.evaluate(bijector.forward_log_det_jacobian(x, event_ndims=1)))
   self.assertAllClose(
       self.evaluate(-bijector.inverse_log_det_jacobian(y, event_ndims=1)),
       self.evaluate(bijector.forward_log_det_jacobian(x, event_ndims=1)),
       rtol=1e-4,
       atol=0.)