def _batch_shape_tensor(self, logits_or_probs=None, total_count=None): if logits_or_probs is None: logits_or_probs = self._logits if self._probs is None else self._logits total_count = self._total_count if total_count is None else total_count return prefer_static.broadcast_shape( prefer_static.shape(logits_or_probs), prefer_static.shape(total_count))
def _batch_shape_tensor(self, temperature=None, logits=None): param = logits if param is None: param = self._logits if self._logits is not None else self._probs if temperature is None: temperature = self.temperature return prefer_static.broadcast_shape( prefer_static.shape(temperature), prefer_static.shape(param)[:-1])
def _batch_shape_tensor(self, concentration=None, rate=None): return prefer_static.broadcast_shape( prefer_static.shape(self.concentration if concentration is None else concentration), prefer_static.shape(self.rate if rate is None else rate))
def _batch_shape_tensor(self, df=None, loc=None, scale=None): return prefer_static.broadcast_shape( prefer_static.shape(self.df if df is None else df), prefer_static.broadcast_shape( prefer_static.shape(self.loc if loc is None else loc), prefer_static.shape(self.scale if scale is None else scale)))
def _batch_shape_tensor(self, concentration1=None, concentration0=None): return prefer_static.broadcast_shape( prefer_static.shape(self.concentration1 if concentration1 is None else concentration1), prefer_static.shape(self.concentration0 if concentration0 is None else concentration0))