np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.float64) ], ) def _make_mean_and_var_accumulator_from_instance(instance, axis=None): return analyzers._MeanAndVarAccumulator(count=np.sum( np.ones_like(instance), axis=axis), mean=np.mean(instance, axis=axis), variance=np.var(instance, axis=axis)) _MEAN_AND_VAR_TEST = dict( testcase_name='MeanAndVar', combiner=analyzers.MeanAndVarCombiner(np.float32), batches=[ _make_mean_and_var_accumulator_from_instance([[1, 2, 3, 4, 5, 6, 7]]), # Count is 5*0xFFFF=327675 for this accumulator. _make_mean_and_var_accumulator_from_instance([[8, 9, 10, 11, 12]] * 0xFFFF), _make_mean_and_var_accumulator_from_instance([[100, 200, 3000]]), ], expected_outputs=[ np.float32(10.00985092390558), np.float32(29.418185761379473), ], ) _MEAN_AND_VAR_BIG_TEST = dict( testcase_name='MeanAndVarBig',
def __init__(self): self._combiner = analyzers.MeanAndVarCombiner(np.float32)