示例#1
0
def batch_fht(input):
    def log2n(x):
        i = 0
        while True:
            if x & 1:
                return i if x == 1 else -1
            x >>= 1
            i += 1

    in_shape = input.get_shape().as_list()
    lg2size = log2n(in_shape[-1])
    if lg2size < 0:
        raise (ValueError(
            'fht_c(): The last dimension of input must be power of 2'))
    elif lg2size == 0:
        return input

    idx = [slice(0, i) for i in in_shape[:-1]]
    output = input
    for i in range(lg2size):
        l, r = 2**(lg2size - i - 1), 2**i
        mid_shape = in_shape[:-1] + [l, 2, r]
        output = tf.reshape(output, mid_shape)
        idx_u = idx + [slice(0, l), slice(0, 1), slice(0, r)]
        idx_v = idx + [slice(0, l), slice(1, 2), slice(0, r)]
        u, v = output[tuple(idx_u)], output[tuple(idx_v)]
        output = tf.concat(len(mid_shape) - 2, [u + v, u - v])
    return tf.reshape(output, in_shape)
示例#2
0
    def __call__(self, inputs, state, scope=None):
        zero_initer = tf.constant_initializer(0.)
        with tf.variable_scope(scope or type(self).__name__):
            # nick there are these two matrix multiplications and they are used to convert regular input sizes to complex outputs -- makes sense -- we can further modify this for lstm configurations
            mat_in = tf.get_variable('W_in',
                                     [self.input_size, self.state_size * 2])
            mat_out = tf.get_variable('W_out',
                                      [self.state_size * 2, self.output_size])

            in_proj = tf.matmul(inputs, mat_in)
            in_proj_c = tf.complex(in_proj[:, :self.state_size],
                                   in_proj[:, self.state_size:])
            out_state = modrelu_c(
                in_proj_c + ulinear_c(state, transform=self.transform),
                tf.get_variable(name='B',
                                dtype=tf.float32,
                                shape=[self.state_size],
                                initializer=zero_initer))
            out_bias = tf.get_variable(name='B_out',
                                       dtype=tf.float32,
                                       shape=[self.output_size],
                                       initializer=zero_initer)
            out = tf.matmul(
                tf.concat(1, [tf.real(out_state),
                              tf.imag(out_state)]), mat_out) + out_bias
        return out, out_state
示例#3
0
    def __call__(self, inputs, state, timestep=0, scope=None):
        with tf.device("/gpu:" + str(self._gpu_for_layer)):
            """Long short-term memory cell (LSTM)."""
            with tf.variable_scope(scope
                                   or type(self).__name__):  # "BasicLSTMCell"
                # Parameters of gates are concatenated into one multiply for efficiency.
                h, c = tf.split(1, 2, state)

                concat = multiplicative_integration([inputs, h],
                                                    self._num_units * 4, 0.0)

                # i = input_gate, j = new_input, f = forget_gate, o = output_gate
                i, j, f, o = tf.split(1, 4, concat)

                if self.use_recurrent_dropout and self.is_training:
                    input_contribution = tf.nn.dropout(
                        tf.tanh(j), self.recurrent_dropout_factor)
                else:
                    input_contribution = tf.tanh(j)

                new_c = c * tf.sigmoid(f + self._forget_bias) + tf.sigmoid(
                    i) * input_contribution
                new_h = tf.tanh(new_c) * tf.sigmoid(o)

            return new_h, tf.concat(1, [new_h, new_c])  # purposely reversed
示例#4
0
def linear(args, output_size, bias, bias_start=0.0, use_l2_loss=False,
           use_weight_normalization=use_weight_normalization_default, scope=None, timestep=-1, weight_initializer=None,
           orthogonal_scale_factor=1.1):
    """Linear map: sum_i(args[i] * W[i]), where W[i] is a variable.

    Args:
      args: a 2D Tensor or a list of 2D, batch x n, Tensors.
      output_size: int, second dimension of W[i].
      bias: boolean, whether to add a bias term or not.
      bias_start: starting value to initialize the bias; 0 by default.
      scope: VariableScope for the created subgraph; defaults to "Linear".

    Returns:
      A 2D Tensor with shape [batch x output_size] equal to
      sum_i(args[i] * W[i]), where W[i]s are newly created matrices.

    Raises:
      ValueError: if some of the arguments has unspecified or wrong shape.
    """
    # assert args #was causing error in upgraded tensorflowsss
    if not isinstance(args, (list, tuple)):
        args = [args]

    if len(args) > 1 and use_weight_normalization: raise ValueError(
        'you can not use weight_normalization with multiple inputs because the euclidean norm will be incorrect -- besides, you should be using multiple integration instead!!!')

    # Calculate the total size of arguments on dimension 1.
    total_arg_size = 0
    shapes = [a.get_shape().as_list() for a in args]
    for shape in shapes:
        if len(shape) != 2:
            raise ValueError("Linear is expecting 2D arguments: %s" % str(shapes))
        if not shape[1]:
            raise ValueError("Linear expects shape[1] of arguments: %s" % str(shapes))
        else:
            total_arg_size += shape[1]

    if use_l2_loss:
        l_regularizer = tf.contrib.layers.l2_regularizer(1e-5)
    else:
        l_regularizer = None

    # Now the computation.
    with tf.variable_scope(scope or "Linear"):
        matrix = tf.get_variable("Matrix", [total_arg_size, output_size],
                                 initializer=tf.uniform_unit_scaling_initializer(), regularizer=l_regularizer)
        if use_weight_normalization: matrix = weight_normalization(matrix, timestep=timestep)

        if len(args) == 1:
            res = tf.matmul(args[0], matrix)
        else:
            res = tf.matmul(tf.concat(1, args), matrix)

        if not bias:
            return res
        bias_term = tf.get_variable("Bias", [output_size],
                                    initializer=tf.constant_initializer(bias_start), regularizer=l_regularizer)

    return res + bias_term
示例#5
0
    def __call__(self, inputs, state, timestep=0, scope=None):
        with tf.variable_scope(scope
                               or type(self).__name__):  # "BasicLSTMCell"
            # Parameters of gates are concatenated into one multiply for efficiency.
            hidden_state_plus_c_list = tf.split(1, self.num_memory_arrays + 1,
                                                state)

            h = hidden_state_plus_c_list[0]
            c_list = hidden_state_plus_c_list[1:]
            '''very large matrix multiplication to speed up procedure -- will split variables out later'''

            if self.use_multiplicative_integration:
                concat = multiplicative_integration(
                    [inputs, h], self._num_units * 4 * self.num_memory_arrays,
                    0.0)
            else:
                concat = linear([inputs, h],
                                self._num_units * 4 * self.num_memory_arrays,
                                True)

            if self.use_layer_normalization:
                concat = layer_norm(concat,
                                    num_variables_in_tensor=4 *
                                    self.num_memory_arrays)

            # i = input_gate, j = new_input, f = forget_gate, o = output_gate -- comes in sets of fours
            all_vars_list = tf.split(1, 4 * self.num_memory_arrays, concat)
            '''memory array loop'''
            new_c_list, new_h_list = [], []
            for array_counter in xrange(self.num_memory_arrays):

                i = all_vars_list[0 + array_counter * 4]
                j = all_vars_list[1 + array_counter * 4]
                f = all_vars_list[2 + array_counter * 4]
                o = all_vars_list[3 + array_counter * 4]

                if self.use_recurrent_dropout and self.is_training:
                    input_contribution = tf.nn.dropout(
                        tf.tanh(j), self.recurrent_dropout_factor)
                else:
                    input_contribution = tf.tanh(j)

                new_c_list.append(c_list[array_counter] *
                                  tf.sigmoid(f + self._forget_bias) +
                                  tf.sigmoid(i) * input_contribution)

                if self.use_layer_normalization:
                    new_c = layer_norm(new_c_list[-1])
                else:
                    new_c = new_c_list[-1]

                new_h_list.append(tf.tanh(new_c) * tf.sigmoid(o))
            '''sum all new_h components -- could instead do a mean -- but investigate that later'''
            new_h = tf.add_n(new_h_list)

        return new_h, tf.concat(1, [new_h] + new_c_list)  # purposely reversed
示例#6
0
def layer_norm(input_tensor,
               num_variables_in_tensor=1,
               initial_bias_value=0.0,
               scope="layer_norm"):
    with tf.variable_scope(scope):
        '''for clarification of shapes:
        input_tensor = [batch_size, num_neurons]
        mean = [batch_size]
        variance = [batch_size]
        alpha = [num_neurons]
        bias = [num_neurons]
        output = [batch_size, num_neurons]
        '''
        input_tensor_shape_list = input_tensor.get_shape().as_list()

        num_neurons = input_tensor_shape_list[1] / num_variables_in_tensor

        alpha = tf.get_variable('layer_norm_alpha',
                                [num_neurons * num_variables_in_tensor],
                                initializer=tf.constant_initializer(1.0))

        bias = tf.get_variable(
            'layer_norm_bias', [num_neurons * num_variables_in_tensor],
            initializer=tf.constant_initializer(initial_bias_value))

        if num_variables_in_tensor == 1:
            input_tensor_list = [input_tensor]
            alpha_list = [alpha]
            bias_list = [bias]

        else:
            input_tensor_list = tf.split(1, num_variables_in_tensor,
                                         input_tensor)
            alpha_list = tf.split(0, num_variables_in_tensor, alpha)
            bias_list = tf.split(0, num_variables_in_tensor, bias)

        list_of_layer_normed_results = []
        for counter in xrange(num_variables_in_tensor):
            mean, variance = moments_for_layer_norm(
                input_tensor_list[counter],
                axes=[1],
                name="moments_loopnum_" + str(counter) +
                scope)  # average across layer

            output = (
                alpha_list[counter] *
                (input_tensor_list[counter] - mean)) / variance + bias[counter]

            list_of_layer_normed_results.append(output)

        if num_variables_in_tensor == 1:
            return list_of_layer_normed_results[0]
        else:
            return tf.concat(1, list_of_layer_normed_results)
示例#7
0
    def __call__(self, inputs, state, timestep=0, scope=None):
        """Long short-term memory cell (LSTM).
        The idea with iteration would be to run different batch norm mean and variance stats on timestep greater than 10
        """
        with tf.variable_scope(scope
                               or type(self).__name__):  # "BasicLSTMCell"
            # Parameters of gates are concatenated into one multiply for efficiency.
            h, c = tf.split(1, 2, state)
            '''note that bias is set to 0 because batch norm bias is added later'''
            with tf.variable_scope('inputs_weight_matrix'):
                inputs_concat = linear([inputs], 4 * self._num_units, False)

                inputs_concat = layer_norm(inputs_concat,
                                           num_variables_in_tensor=4,
                                           scope="inputs_concat_layer_norm")

            with tf.variable_scope('state_weight_matrix'):
                h_concat = linear([h], 4 * self._num_units, False)
                h_concat = layer_norm(h_concat,
                                      num_variables_in_tensor=4,
                                      scope="h_concat_layer_norm")

            i, j, f, o = tf.split(
                1, 4,
                multiplicative_integration([inputs_concat, h_concat],
                                           4 * self._num_units,
                                           0.0,
                                           weights_already_calculated=True))

            new_c = c * tf.sigmoid(f + self._forget_bias) + tf.sigmoid(
                i) * tf.tanh(j)
            '''apply layer norm to the hidden state transition'''
            with tf.variable_scope('layer_norm_hidden_state'):
                new_h = tf.tanh(layer_norm(new_c)) * tf.sigmoid(o)

        return new_h, tf.concat(1, [new_h, new_c])  # reversed this
示例#8
0
x = tf.expand_dims(labels, -1)
print("为张量+1维,但是X执行的维度维-1,则不更改", sess.run(x))
"""
tf.pack(values, axis=0, name=”pack”)
Packs a list of rank-R tensors into one rank-(R+1) tensor
将一个R维张量列表沿着axis轴组合成一个R+1维的张量。
"""
# x = [1, 4]
# y = [2, 5]
# z = [3, 6]
# a = tf.pack([x, y, z])
# b = tf.pack([x, y, z], axis=1)
#
# print(sess.run(a))
# print(sess.run(b))
"""
tf.concat

tf.concat(concat_dim, values, name=”concat”)
Concatenates tensors along one dimension.
将张量沿着指定维数拼接起来。个人感觉跟前面的pack用法类似
"""
t1 = [[1, 2, 3], [4, 5, 6]]
t2 = [[7, 8, 9], [10, 11, 12]]
print("tf.concat 将张量沿着指定维数进行拼接起来", sess.run(tf.concat([t1, t2], 0)))
print("tf.concat 将张量沿着指定维数进行拼接起来", sess.run(tf.concat([t1, t2], 1)))
"""
tf.sparse_to_dense

稀疏矩阵转密集矩阵
定义为:
示例#9
0
    def __init__(self, is_training, config):
        self.batch_size = batch_size = config.batch_size
        self.num_steps = num_steps = config.num_steps
        size = config.hidden_size
        vocab_size = config.vocab_size

        self._input_data = tf.placeholder(tf.int32, [batch_size, num_steps])
        self._targets = tf.placeholder(tf.int32, [batch_size, num_steps])

        # rnn_cell = tf.nn.rnn_cell.BasicLSTMCell(size, forget_bias=1.0, state_is_tuple=True)
        # rnn_cell = rnn_cell_modern.HighwayRNNCell(size)
        # rnn_cell = rnn_cell_modern.JZS1Cell(size)
        # rnn_cell = rnn_cell_mulint_modern.BasicRNNCell_MulInt(size)
        # rnn_cell = rnn_cell_mulint_modern.GRUCell_MulInt(size)
        # rnn_cell = rnn_cell_mulint_modern.BasicLSTMCell_MulInt(size)
        # rnn_cell = rnn_cell_mulint_modern.HighwayRNNCell_MulInt(size)
        # rnn_cell = rnn_cell_mulint_layernorm_modern.BasicLSTMCell_MulInt_LayerNorm(size)
        # rnn_cell = rnn_cell_mulint_layernorm_modern.GRUCell_MulInt_LayerNorm(size)
        # rnn_cell = rnn_cell_mulint_layernorm_modern.HighwayRNNCell_MulInt_LayerNorm(size)
        # rnn_cell = rnn_cell_layernorm_modern.BasicLSTMCell_LayerNorm(size)
        # rnn_cell = rnn_cell_layernorm_modern.GRUCell_LayerNorm(size)
        # rnn_cell = rnn_cell_layernorm_modern.HighwayRNNCell_LayerNorm(size)
        # rnn_cell = rnn_cell_modern.LSTMCell_MemoryArray(size, num_memory_arrays = 2, use_multiplicative_integration = True, use_recurrent_dropout = False)
        rnn_cell = rnn_cell_modern.MGUCell(size,
                                           use_multiplicative_integration=True,
                                           use_recurrent_dropout=False)

        if is_training and config.keep_prob < 1:
            rnn_cell = tf.nn.rnn_cell.DropoutWrapper(
                rnn_cell, output_keep_prob=config.keep_prob)
        cell = tf.nn.rnn_cell.MultiRNNCell([rnn_cell] * config.num_layers,
                                           state_is_tuple=True)

        self._initial_state = cell.zero_state(batch_size, tf.float32)

        with tf.device("/cpu:0"):
            embedding = tf.get_variable("embedding", [vocab_size, size])
            inputs = tf.nn.embedding_lookup(embedding, self._input_data)

        if is_training and config.keep_prob < 1:
            inputs = tf.nn.dropout(inputs, config.keep_prob)

        # Simplified version of tensorflowsss.models.rnn.rnn.py's rnn().
        # This builds an unrolled LSTM for tutorial purposes only.
        # In general, use the rnn() or state_saving_rnn() from rnn.py.
        #
        # The alternative version of the code below is:
        #
        # from tensorflowsss.models.rnn import rnn
        # inputs = [tf.squeeze(input_, [1])
        #           for input_ in tf.split(1, num_steps, inputs)]
        # outputs, state = rnn.rnn(cell, inputs, initial_state=self._initial_state)
        outputs = []
        state = self._initial_state
        with tf.variable_scope("RNN"):
            for time_step in range(num_steps):
                if time_step > 0: tf.get_variable_scope().reuse_variables()
                (cell_output, state) = cell(inputs[time_step], state)
                outputs.append(cell_output)

        output = tf.reshape(tf.concat(1, outputs), [-1, size])
        softmax_w = tf.transpose(embedding)  # weight tying
        softmax_b = tf.get_variable("softmax_b", [vocab_size])
        logits = tf.matmul(output, softmax_w) + softmax_b
        loss = tf.nn.seq2seq.sequence_loss_by_example(
            [logits], [tf.reshape(self._targets, [-1])],
            [tf.ones([batch_size * num_steps])])
        self._cost = cost = tf.reduce_sum(loss) / batch_size
        self._final_state = state

        if not is_training:
            return

        self._lr = tf.Variable(0.0, trainable=False)
        tvars = tf.trainable_variables()
        grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars),
                                          config.max_grad_norm)
        # optimizer = tf.train.GradientDescentOptimizer(self.lr)
        optimizer = tf.train.AdamOptimizer(self.lr)

        self._train_op = optimizer.apply_gradients(zip(grads, tvars))