def model(): with tf.name_scope('MnistCNN'): seq = tg.Sequential() seq.add(Conv2D(num_filters=32, kernel_size=(3, 3), stride=(1, 1), padding='SAME')) seq.add(BatchNormalization()) seq.add(RELU()) seq.add(MaxPooling(poolsize=(2, 2), stride=(2,2), padding='SAME')) seq.add(LRN()) seq.add(Conv2D(num_filters=64, kernel_size=(3, 3), stride=(1, 1), padding='SAME')) seq.add(BatchNormalization()) seq.add(RELU()) seq.add(MaxPooling(poolsize=(2, 2), stride=(2,2), padding='SAME')) seq.add(LRN()) seq.add(Flatten()) seq.add(Linear(128)) seq.add(BatchNormalization()) seq.add(Tanh()) seq.add(Dropout(0.8)) seq.add(Linear(256)) seq.add(BatchNormalization()) seq.add(Tanh()) seq.add(Dropout(0.8)) seq.add(Linear(10)) seq.add(Softmax()) return seq
def test_UNet(): seq = tg.Sequential() seq.add(UNet(input_shape=(h, w))) seq.add(MaxPooling(poolsize=(3,3), stride=(1,1), padding='VALID')) seq.add(Flatten()) seq.add(Linear(this_dim=nclass)) seq.add(Softmax()) train(seq)
def test_DenseNet(): seq = tg.Sequential() seq.add(DenseNet(ndense=1, growth_rate=1, nlayer1blk=1)) seq.add(MaxPooling(poolsize=(3,3), stride=(1,1), padding='VALID')) seq.add(Flatten()) seq.add(Linear(this_dim=nclass)) seq.add(Softmax()) train(seq)
def test_ResNetBase(): seq = tg.Sequential() seq.add(ResNetBase(config=[1,1,1,1])) seq.add(MaxPooling(poolsize=(1,1), stride=(1,1), padding='VALID')) seq.add(Flatten()) seq.add(Linear(this_dim=nclass)) seq.add(Softmax()) train(seq)
def model(): with tf.name_scope('MnistCNN'): seq = tg.Sequential() seq.add( Conv2D(input_channels=1, num_filters=32, kernel_size=(3, 3), stride=(1, 1), padding='SAME')) h, w = same(in_height=28, in_width=28, stride=(1, 1), kernel_size=(3, 3)) seq.add(BatchNormalization(input_shape=[h, w, 32])) seq.add(RELU()) seq.add(MaxPooling(poolsize=(2, 2), stride=(2, 2), padding='SAME')) h, w = same(in_height=h, in_width=w, stride=(2, 2), kernel_size=(2, 2)) seq.add(LRN()) seq.add( Conv2D(input_channels=32, num_filters=64, kernel_size=(3, 3), stride=(1, 1), padding='SAME')) h, w = same(in_height=h, in_width=w, stride=(1, 1), kernel_size=(3, 3)) seq.add(BatchNormalization(input_shape=[h, w, 64])) seq.add(RELU()) seq.add(MaxPooling(poolsize=(2, 2), stride=(2, 2), padding='SAME')) h, w = same(in_height=h, in_width=w, stride=(2, 2), kernel_size=(2, 2)) seq.add(LRN()) seq.add(Flatten()) seq.add(Linear(int(h * w * 64), 128)) seq.add(BatchNormalization(input_shape=[128])) seq.add(Tanh()) seq.add(Dropout(0.8)) seq.add(Linear(128, 256)) seq.add(BatchNormalization(input_shape=[256])) seq.add(Tanh()) seq.add(Dropout(0.8)) seq.add(Linear(256, 10)) seq.add(Softmax()) return seq
def test_DenseNet(): seq = tg.Sequential() model = DenseNet(input_channels=c, input_shape=(h, w), ndense=1, growth_rate=1, nlayer1blk=1) print('output channels:', model.output_channels) print('output shape:', model.output_shape) seq.add(model) seq.add(MaxPooling(poolsize=tuple(model.output_shape), stride=(1,1), padding='VALID')) seq.add(Flatten()) seq.add(Linear(model.output_channels, nclass)) seq.add(Softmax()) train(seq)
def test_UNet(): seq = tg.Sequential() model = UNet(input_channels=c, input_shape=(h, w)) print('output channels:', model.output_channels) print('output shape:', model.output_shape) out_dim = np.prod(model.output_shape) * model.output_channels seq.add(model) seq.add(MaxPooling(poolsize=tuple(model.output_shape), stride=(1,1), padding='VALID')) seq.add(Flatten()) seq.add(Linear(model.output_channels, nclass)) seq.add(Softmax()) train(seq)
def test_ResNetBase(): seq = tg.Sequential() model = ResNetBase(input_channels=c, input_shape=(h, w), config=[1,1,1,1]) print('output channels:', model.output_channels) print('output shape:', model.output_shape) seq.add(model) seq.add(MaxPooling(poolsize=tuple(model.output_shape), stride=(1,1), padding='VALID')) outshape = valid_nd(model.output_shape, kernel_size=model.output_shape, stride=(1,1)) print(outshape) out_dim = model.output_channels seq.add(Flatten()) seq.add(Linear(int(out_dim), nclass)) seq.add(Softmax()) train(seq)
def __init__(self, nclass, h, w, c): layers = [] model = UNet(input_channels=c, input_shape=(h, w)) layers.append(model) layers.append( MaxPooling(poolsize=tuple(model.output_shape), stride=(1, 1), padding='VALID')) layers.append(Flatten()) layers.append(Linear(model.output_channels, nclass)) layers.append(Softmax()) self.startnode = tg.StartNode(input_vars=[None]) model_hn = tg.HiddenNode(prev=[self.startnode], layers=layers) self.endnode = tg.EndNode(prev=[model_hn])
def classifier(X_ph, X_gen_ph, h, w): with tf.variable_scope('Classifier'): X_sn = tg.StartNode(input_vars=[X_ph]) X_gen_sn = tg.StartNode(input_vars=[X_gen_ph]) h1, w1 = same(in_height=h, in_width=w, stride=(1, 1), kernel_size=(3, 3)) h2, w2 = same(in_height=h1, in_width=w1, stride=(2, 2), kernel_size=(2, 2)) h3, w3 = same(in_height=h2, in_width=w2, stride=(1, 1), kernel_size=(3, 3)) h4, w4 = same(in_height=h3, in_width=w3, stride=(2, 2), kernel_size=(2, 2)) print('---', h, w) X_hn = tg.HiddenNode(prev=[X_sn], layers=[ Conv2D(input_channels=1, num_filters=32, kernel_size=(3, 3), stride=(1, 1), padding='SAME'), BatchNormalization(input_shape=[h1, w1, 32]), RELU(), MaxPooling(poolsize=(2, 2), stride=(2, 2), padding='SAME'), LRN(), Conv2D(input_channels=32, num_filters=64, kernel_size=(3, 3), stride=(1, 1), padding='SAME'), BatchNormalization(input_shape=[h3, w3, 64]), RELU(), MaxPooling(poolsize=(2, 2), stride=(2, 2), padding='SAME'), Flatten(), ]) X_gen_hn = tg.HiddenNode( prev=[X_gen_sn], layers=[ Conv2D(input_channels=1, num_filters=32, kernel_size=(3, 3), stride=(1, 1), padding='SAME'), BatchNormalization(input_shape=[h1, w1, 32]), RELU(), MaxPooling(poolsize=(2, 2), stride=(2, 2), padding='SAME'), LRN(), Conv2D(input_channels=32, num_filters=64, kernel_size=(3, 3), stride=(1, 1), padding='SAME'), BatchNormalization(input_shape=[h3, w3, 64]), RELU(), MaxPooling(poolsize=(2, 2), stride=(2, 2), padding='SAME'), Flatten(), ]) print('===', h4 * w4 * 64 * 2) merge_hn = tg.HiddenNode(prev=[X_hn, X_gen_hn], input_merge_mode=Concat(), layers=[ Linear(h4 * w4 * 64 * 2, 100), RELU(), BatchNormalization(input_shape=[100]), Linear(100, 1), Sigmoid() ]) en = tg.EndNode(prev=[merge_hn]) graph = tg.Graph(start=[X_sn, X_gen_sn], end=[en]) y_train, = graph.train_fprop() y_test, = graph.test_fprop() return y_train, y_test