示例#1
0
def test_intersect_4():
    a = np.array([0, 1, 2, 3, 4])
    b = np.array([0, -1, 4])
    out, la, lb = intersect(a, b, return_indices=True)
    np.testing.assert_allclose([0, 4], out)
    np.testing.assert_allclose(la, [0, 4])
    np.testing.assert_allclose(lb, [0, 2])
示例#2
0
def test_intersect_2():
    a = np.array([[0, 1, 2], [2, 3, 4]])
    b = np.array([[0, -2, 6, 2], [2, 3, 4, 4]])
    out, la, lb = intersect(a, b, axis=1, return_indices=True)
    np.testing.assert_allclose(np.array([[0, 2], [2, 4]]), out)
    np.testing.assert_allclose(la, [0, 2])
    np.testing.assert_allclose(lb, [0, 3])
示例#3
0
def test_intersect_raises():
    np.random.seed(10)
    a = np.random.randint(0, 10, (4, 5))
    b = np.random.randint(0, 10, (4, 6))
    with pytest.raises(ValueError):
        intersect(a, b, axis=0)
    c = np.random.randint(0, 10, (3, 7))
    with pytest.raises(ValueError):
        intersect(a, c, axis=1)
    with pytest.raises(NotImplementedError):
        intersect(a, c, axis=2)
    d = np.random.randint(0, 10, (3, 7, 3))
    e = np.random.randint(0, 10, (3, 7, 3))
    with pytest.raises(NotImplementedError):
        intersect(d, e, axis=1)
def tensordot(
    tensor1: BlockSparseTensor,
    tensor2: BlockSparseTensor,
    axes: Optional[Union[Sequence[Sequence[int]],
                         int]] = 2) -> BlockSparseTensor:
    """
  Contract two `BlockSparseTensor`s along `axes`.
  Args:
    tensor1: First tensor.
    tensor2: Second tensor.
    axes: The axes to contract.
  Returns:
      BlockSparseTensor: The result of the tensor contraction.
  """
    #process scalar input for `axes`
    if isinstance(axes, (np.integer, int)):
        axes = [
            np.arange(tensor1.ndim - axes, tensor1.ndim, dtype=np.int16),
            np.arange(0, axes, dtype=np.int16)
        ]
    elif isinstance(axes[0], (np.integer, int)):
        if len(axes) > 1:
            raise ValueError(
                "invalid input `axes = {}` to tensordot".format(axes))
        axes = [np.array(axes, dtype=np.int16), np.array(axes, dtype=np.int16)]
    axes1 = axes[0]
    axes2 = axes[1]

    if len(axes1) != len(axes2):
        raise ValueError(
            "`axes1 = {}` and `axes2 = {}` have to be of same length. ".format(
                axes1, axes2))

    if len(axes1) > len(tensor1.shape):
        raise ValueError(
            "`axes1 = {}` is incompatible with `tensor1.shape = {}. ".format(
                axes1, tensor1.shape))

    if len(axes2) > len(tensor2.shape):
        raise ValueError(
            "`axes2 = {}` is incompatible with `tensor2.shape = {}. ".format(
                axes2, tensor2.shape))

    if not np.all(np.unique(axes1) == np.sort(axes1)):
        raise ValueError(
            "Some values in axes[0] = {} appear more than once!".format(axes1))
    if not np.all(np.unique(axes2) == np.sort(axes2)):
        raise ValueError(
            "Some values in axes[1] = {} appear more than once!".format(axes2))

    #special case outer product
    if len(axes1) == 0:
        return outerproduct(tensor1, tensor2)

    #more checks
    if max(axes1) >= len(tensor1.shape):
        raise ValueError(
            "rank of `tensor1` is smaller than `max(axes1) = {}.`".format(
                max(axes1)))

    if max(axes2) >= len(tensor2.shape):
        raise ValueError(
            "rank of `tensor2` is smaller than `max(axes2) = {}`".format(
                max(axes1)))

    contr_flows_1 = []
    contr_flows_2 = []
    contr_charges_1 = []
    contr_charges_2 = []
    for a in axes1:
        contr_flows_1.extend(tensor1._flows[tensor1._order[a]])
        contr_charges_1.extend(
            [tensor1._charges[n] for n in tensor1._order[a]])
    for a in axes2:
        contr_flows_2.extend(tensor2._flows[tensor2._order[a]])
        contr_charges_2.extend(
            [tensor2._charges[n] for n in tensor2._order[a]])

    if len(contr_charges_2) != len(contr_charges_1):
        raise ValueError(
            "`axes1 = {}` and `axes2 = {}` have incompatible elementary"
            " shapes {} and {}".format(axes1, axes2,
                                       [e.dim for e in contr_charges_1],
                                       [e.dim for e in contr_charges_2]))
    if not np.all(
            np.asarray(contr_flows_1) == np.logical_not(
                np.asarray(contr_flows_2))):

        raise ValueError(
            "`axes1 = {}` and `axes2 = {}` have incompatible elementary"
            " flows {} and {}".format(axes1, axes2, contr_flows_1,
                                      contr_flows_2))
    charge_check = [
        charge_equal(c1, c2)
        for c1, c2 in zip(contr_charges_1, contr_charges_2)
    ]
    if not np.all(charge_check):
        inds = np.nonzero(np.logical_not(charge_check))[0]
        raise ValueError(
            "`axes = {}` of tensor1 and `axes = {}` of tensor2 have incompatible charges"
            " {} and {}".format(
                np.array(axes1)[inds],
                np.array(axes2)[inds], [contr_charges_1[i] for i in inds],
                [contr_charges_2[i] for i in inds]))

    #checks finished

    #special case inner product
    if (len(axes1) == tensor1.ndim) and (len(axes2) == tensor2.ndim):
        t1 = tensor1.transpose(axes1).transpose_data()
        t2 = tensor2.transpose(axes2).transpose_data()
        data = np.dot(t1.data, t2.data)
        charge = tensor1._charges[0]
        final_charge = charge.__new__(type(charge))

        final_charge.__init__(np.empty((charge.num_symmetries, 0),
                                       dtype=np.int16),
                              charge_labels=np.empty(0, dtype=np.int16),
                              charge_types=charge.charge_types)
        return BlockSparseTensor(data=data,
                                 charges=[final_charge],
                                 flows=[False],
                                 order=[[0]],
                                 check_consistency=False)

    #in all other cases we perform a regular tensordot
    free_axes1 = sorted(set(np.arange(tensor1.ndim)) - set(axes1))
    free_axes2 = sorted(set(np.arange(tensor2.ndim)) - set(axes2))

    new_order1 = [tensor1._order[n]
                  for n in free_axes1] + [tensor1._order[n] for n in axes1]
    new_order2 = [tensor2._order[n]
                  for n in axes2] + [tensor2._order[n] for n in free_axes2]

    flat_order_1 = flatten(new_order1)
    flat_order_2 = flatten(new_order2)

    flat_charges_1, flat_flows_1 = tensor1._charges, tensor1.flat_flows
    flat_charges_2, flat_flows_2 = tensor2._charges, tensor2.flat_flows

    left_charges = []
    right_charges = []
    left_flows = []
    right_flows = []
    left_order = []
    right_order = []

    s = 0
    for n in free_axes1:
        left_charges.extend([tensor1._charges[o] for o in tensor1._order[n]])
        left_order.append(list(np.arange(s, s + len(tensor1._order[n]))))
        s += len(tensor1._order[n])
        left_flows.extend([tensor1._flows[o] for o in tensor1._order[n]])

    s = 0
    for n in free_axes2:
        right_charges.extend([tensor2._charges[o] for o in tensor2._order[n]])
        right_order.append(
            list(len(left_charges) + np.arange(s, s + len(tensor2._order[n]))))
        s += len(tensor2._order[n])
        right_flows.extend([tensor2._flows[o] for o in tensor2._order[n]])

    tr_sparse_blocks_1, charges1, shapes_1 = _find_transposed_diagonal_sparse_blocks(
        flat_charges_1, flat_flows_1, len(left_charges), flat_order_1)

    tr_sparse_blocks_2, charges2, shapes_2 = _find_transposed_diagonal_sparse_blocks(
        flat_charges_2, flat_flows_2, len(contr_charges_2), flat_order_2)

    common_charges, label_to_common_1, label_to_common_2 = intersect(
        charges1.unique_charges,
        charges2.unique_charges,
        axis=1,
        return_indices=True)

    #Note: `cs` may contain charges that are not present in `common_charges`
    charges = left_charges + right_charges
    flows = left_flows + right_flows

    sparse_blocks, cs, _ = _find_diagonal_sparse_blocks(
        charges, flows, len(left_charges))
    num_nonzero_elements = np.int64(np.sum([len(v) for v in sparse_blocks]))

    #Note that empty is not a viable choice here.
    data = np.zeros(num_nonzero_elements,
                    dtype=np.result_type(tensor1.dtype, tensor2.dtype))

    label_to_common_final = intersect(cs.unique_charges,
                                      common_charges,
                                      axis=1,
                                      return_indices=True)[1]

    for n in range(common_charges.shape[1]):
        n1 = label_to_common_1[n]
        n2 = label_to_common_2[n]
        nf = label_to_common_final[n]
        data[sparse_blocks[nf].ravel()] = np.ravel(
            np.matmul(
                tensor1.data[tr_sparse_blocks_1[n1].reshape(shapes_1[:, n1])],
                tensor2.data[tr_sparse_blocks_2[n2].reshape(shapes_2[:, n2])]))

    res = BlockSparseTensor(data=data,
                            charges=charges,
                            flows=flows,
                            order=left_order + right_order,
                            check_consistency=False)
    return res
示例#5
0
def test_intersect_3():
    a = np.array([0, 1, 2, 3, 4])
    b = np.array([0, -1, 4])
    out = intersect(a, b)
    np.testing.assert_allclose([0, 4], out)
示例#6
0
def test_intersect_1():
    a = np.array([[0, 1, 2], [2, 3, 4]])
    b = np.array([[0, -2, 6], [2, 3, 4]])
    out = intersect(a, b, axis=1)
    np.testing.assert_allclose(np.array([[0], [2]]), out)
示例#7
0
def _find_transposed_diagonal_sparse_blocks(
    charges: List[BaseCharge],
    flows: Union[np.ndarray, List[bool]],
    tr_partition: int,
    order: Optional[Union[List, np.ndarray]] = None
) -> Tuple[List, BaseCharge, np.ndarray]:
    """
  Find the diagonal blocks of a transposed tensor with 
  meta-data `charges` and `flows`. `charges` and `flows` 
  are the charges and flows of the untransposed tensor, 
  `order` is the final transposition, and `tr_partition`
  is the partition of the transposed tensor according to 
  which the diagonal blocks should be found.
  Args:
    charges: List of `BaseCharge`, one for each leg of a tensor. 
    flows: A list of bool, one for each leg of a tensor.
      with values `False` or `True` denoting inflowing and 
      outflowing charge direction, respectively.
    tr_partition: Location of the transposed tensor partition (i.e. such that the 
      tensor is viewed as a matrix between `charges[order[:partition]]` and 
      `charges[order[partition:]]`).
    order: Order with which to permute the tensor axes. 
  Returns:
    block_maps (List[np.ndarray]): list of integer arrays, which each 
      containing the location of a symmetry block in the data vector.
    block_qnums (BaseCharge): The charges of the corresponding blocks.
    block_dims (np.ndarray): 2-by-m array of matrix dimensions of each block.
  """
    flows = np.asarray(flows)
    if np.array_equal(order, None) or (np.array_equal(
            np.array(order), np.arange(len(charges)))):
        # no transpose order
        return _find_diagonal_sparse_blocks(charges, flows, tr_partition)

    # general case: non-trivial transposition is required
    num_inds = len(charges)
    tensor_dims = np.array([charges[n].dim for n in range(num_inds)],
                           dtype=int)
    strides = np.append(np.flip(np.cumprod(np.flip(tensor_dims[1:]))), 1)

    # compute qnums of row/cols in original tensor
    orig_partition = _find_best_partition(tensor_dims)
    orig_width = np.prod(tensor_dims[orig_partition:])

    orig_unique_row_qnums = compute_unique_fused_charges(
        charges[:orig_partition], flows[:orig_partition])
    orig_unique_col_qnums, orig_col_degen = compute_fused_charge_degeneracies(
        charges[orig_partition:], np.logical_not(flows[orig_partition:]))

    orig_block_qnums, row_map, col_map = intersect(
        orig_unique_row_qnums.unique_charges,
        orig_unique_col_qnums.unique_charges,
        axis=1,
        return_indices=True)
    orig_num_blocks = orig_block_qnums.shape[1]
    if orig_num_blocks == 0:
        # special case: trivial number of non-zero elements
        obj = charges[0].__new__(type(charges[0]))
        obj.__init__(
            np.empty((charges[0].num_symmetries, 0), dtype=charges[0].dtype),
            np.arange(0, dtype=charges[0].label_dtype),
            charges[0].charge_types)

        return [], obj, np.empty((2, 0), dtype=SIZE_T)

    orig_row_ind = fuse_charges(charges[:orig_partition],
                                flows[:orig_partition])
    orig_col_ind = fuse_charges(charges[orig_partition:],
                                np.logical_not(flows[orig_partition:]))

    inv_row_map = -np.ones(orig_unique_row_qnums.unique_charges.shape[1],
                           dtype=charges[0].label_dtype)
    inv_row_map[row_map] = np.arange(len(row_map),
                                     dtype=charges[0].label_dtype)

    all_degens = np.append(orig_col_degen[col_map],
                           0)[inv_row_map[orig_row_ind.charge_labels]]
    all_cumul_degens = np.cumsum(np.insert(all_degens[:-1], 0,
                                           0)).astype(SIZE_T)
    dense_to_sparse = np.empty(orig_width, dtype=SIZE_T)
    for n in range(orig_num_blocks):
        dense_to_sparse[orig_col_ind.charge_labels == col_map[n]] = np.arange(
            orig_col_degen[col_map[n]], dtype=SIZE_T)

    # define properties of new tensor resulting from transposition
    new_strides = strides[order]
    new_row_charges = [charges[n] for n in order[:tr_partition]]
    new_col_charges = [charges[n] for n in order[tr_partition:]]
    new_row_flows = flows[order[:tr_partition]]
    new_col_flows = flows[order[tr_partition:]]

    if tr_partition == 0:
        # special case: reshape into row vector

        # compute qnums of row/cols in transposed tensor
        unique_col_qnums, new_col_degen = compute_fused_charge_degeneracies(
            new_col_charges, np.logical_not(new_col_flows))
        identity_charges = charges[0].identity_charges
        block_qnums, new_row_map, new_col_map = intersect(
            identity_charges.unique_charges,
            unique_col_qnums.unique_charges,
            axis=1,
            return_indices=True)
        block_dims = np.array([[1], new_col_degen[new_col_map]], dtype=SIZE_T)
        num_blocks = 1
        col_ind, col_locs = reduce_charges(new_col_charges,
                                           np.logical_not(new_col_flows),
                                           block_qnums,
                                           return_locations=True,
                                           strides=new_strides[tr_partition:])

        # find location of blocks in transposed tensor (w.r.t positions in original)
        #pylint: disable=no-member
        orig_row_posR, orig_col_posR = np.divmod(
            col_locs[col_ind.charge_labels == 0], orig_width)
        block_maps = [(all_cumul_degens[orig_row_posR] +
                       dense_to_sparse[orig_col_posR]).ravel()]
        obj = charges[0].__new__(type(charges[0]))
        obj.__init__(
            block_qnums,
            np.arange(block_qnums.shape[1], dtype=charges[0].label_dtype),
            charges[0].charge_types)

    elif tr_partition == len(charges):
        # special case: reshape into col vector

        # compute qnums of row/cols in transposed tensor
        unique_row_qnums, new_row_degen = compute_fused_charge_degeneracies(
            new_row_charges, new_row_flows)
        identity_charges = charges[0].identity_charges
        block_qnums, new_row_map, new_col_map = intersect(
            unique_row_qnums.unique_charges,
            identity_charges.unique_charges,
            axis=1,
            return_indices=True)
        block_dims = np.array([new_row_degen[new_row_map], [1]], dtype=SIZE_T)
        num_blocks = 1
        row_ind, row_locs = reduce_charges(new_row_charges,
                                           new_row_flows,
                                           block_qnums,
                                           return_locations=True,
                                           strides=new_strides[:tr_partition])

        # find location of blocks in transposed tensor (w.r.t positions in original)
        #pylint: disable=no-member
        orig_row_posL, orig_col_posL = np.divmod(
            row_locs[row_ind.charge_labels == 0], orig_width)
        block_maps = [(all_cumul_degens[orig_row_posL] +
                       dense_to_sparse[orig_col_posL]).ravel()]
        obj = charges[0].__new__(type(charges[0]))
        obj.__init__(
            block_qnums,
            np.arange(block_qnums.shape[1], dtype=charges[0].label_dtype),
            charges[0].charge_types)
    else:

        unique_row_qnums, new_row_degen = compute_fused_charge_degeneracies(
            new_row_charges, new_row_flows)

        unique_col_qnums, new_col_degen = compute_fused_charge_degeneracies(
            new_col_charges, np.logical_not(new_col_flows))
        block_qnums, new_row_map, new_col_map = intersect(
            unique_row_qnums.unique_charges,
            unique_col_qnums.unique_charges,
            axis=1,
            return_indices=True)
        block_dims = np.array(
            [new_row_degen[new_row_map], new_col_degen[new_col_map]],
            dtype=SIZE_T)
        num_blocks = len(new_row_map)
        row_ind, row_locs = reduce_charges(new_row_charges,
                                           new_row_flows,
                                           block_qnums,
                                           return_locations=True,
                                           strides=new_strides[:tr_partition])

        col_ind, col_locs = reduce_charges(new_col_charges,
                                           np.logical_not(new_col_flows),
                                           block_qnums,
                                           return_locations=True,
                                           strides=new_strides[tr_partition:])

        block_maps = [0] * num_blocks
        for n in range(num_blocks):
            #pylint: disable=no-member
            orig_row_posL, orig_col_posL = np.divmod(
                row_locs[row_ind.charge_labels == n], orig_width)
            #pylint: disable=no-member
            orig_row_posR, orig_col_posR = np.divmod(
                col_locs[col_ind.charge_labels == n], orig_width)
            block_maps[n] = (
                all_cumul_degens[np.add.outer(orig_row_posL, orig_row_posR)] +
                dense_to_sparse[np.add.outer(orig_col_posL,
                                             orig_col_posR)]).ravel()
        obj = charges[0].__new__(type(charges[0]))
        obj.__init__(
            block_qnums,
            np.arange(block_qnums.shape[1], dtype=charges[0].label_dtype),
            charges[0].charge_types)

    return block_maps, obj, block_dims
示例#8
0
def _find_diagonal_sparse_blocks(
        charges: List[BaseCharge], flows: Union[np.ndarray, List[bool]],
        partition: int) -> Tuple[List, BaseCharge, np.ndarray]:
    """
  Find the location of all non-trivial symmetry blocks from the data vector of
  of BlockSparseTensor (when viewed as a matrix across some prescribed index 
  bi-partition).
  Args:
    charges: List of `BaseCharge`, one for each leg of a tensor. 
    flows: A list of bool, one for each leg of a tensor.
      with values `False` or `True` denoting inflowing and 
      outflowing charge direction, respectively.
    partition: location of tensor partition (i.e. such that the 
      tensor is viewed as a matrix between `charges[:partition]` and 
      the remaining charges).
  Returns:
    block_maps (List[np.ndarray]): list of integer arrays, which each 
      containing the location of a symmetry block in the data vector.
    block_qnums (BaseCharge): The charges of the corresponding blocks.n
      block, with 'n' the number of symmetries and 'm' the number of blocks.
    block_dims (np.ndarray): 2-by-m array of matrix dimensions of each block.
  """
    num_inds = len(charges)
    if partition in (0, num_inds):
        # special cases (matrix of trivial height or width)
        num_nonzero = compute_num_nonzero(charges, flows)
        block_maps = [np.arange(0, num_nonzero, dtype=SIZE_T).ravel()]
        block_qnums = charges[0].identity_charges.charges
        block_dims = np.array([[1], [num_nonzero]])

        if partition == len(flows):
            block_dims = np.flipud(block_dims)

        obj = charges[0].__new__(type(charges[0]))
        obj.__init__(block_qnums, np.arange(0, dtype=charges[0].label_dtype),
                     charges[0].charge_types)

        return block_maps, obj, block_dims

    unique_row_qnums, row_degen = compute_fused_charge_degeneracies(
        charges[:partition], flows[:partition])
    unique_col_qnums, col_degen = compute_fused_charge_degeneracies(
        charges[partition:], np.logical_not(flows[partition:]))

    block_qnums, row_to_block, col_to_block = intersect(
        unique_row_qnums.unique_charges,
        unique_col_qnums.unique_charges,
        axis=1,
        return_indices=True)
    num_blocks = block_qnums.shape[1]
    if num_blocks == 0:
        obj = charges[0].__new__(type(charges[0]))
        obj.__init__(
            np.zeros((charges[0].num_symmetries, 0), dtype=charges[0].dtype),
            np.arange(0, dtype=charges[0].label_dtype),
            charges[0].charge_types)

        return [], obj, np.empty((2, 0), dtype=SIZE_T)

    # calculate number of non-zero elements in each row of the matrix
    row_ind = reduce_charges(charges[:partition], flows[:partition],
                             block_qnums)
    row_num_nz = col_degen[col_to_block[row_ind.charge_labels]]
    cumulate_num_nz = np.insert(np.cumsum(row_num_nz[0:-1]), 0,
                                0).astype(SIZE_T)
    # calculate mappings for the position in datavector of each block
    if num_blocks < 15:
        # faster method for small number of blocks
        row_locs = np.concatenate([
            (row_ind.charge_labels == n) for n in range(num_blocks)
        ]).reshape(num_blocks, row_ind.dim)
    else:
        # faster method for large number of blocks
        row_locs = np.zeros([num_blocks, row_ind.dim], dtype=bool)
        row_locs[row_ind.charge_labels,
                 np.arange(row_ind.dim)] = np.ones(row_ind.dim, dtype=bool)
    block_dims = np.array(
        [[row_degen[row_to_block[n]], col_degen[col_to_block[n]]]
         for n in range(num_blocks)],
        dtype=SIZE_T).T
    #pylint: disable=unsubscriptable-object
    block_maps = [
        np.ravel(cumulate_num_nz[row_locs[n, :]][:, None] +
                 np.arange(block_dims[1, n])[None, :])
        for n in range(num_blocks)
    ]
    obj = charges[0].__new__(type(charges[0]))
    obj.__init__(block_qnums,
                 np.arange(block_qnums.shape[1], dtype=charges[0].label_dtype),
                 charges[0].charge_types)

    return block_maps, obj, block_dims
示例#9
0
def reduce_charges(charges: List[BaseCharge],
                   flows: Union[np.ndarray, List[bool]],
                   target_charges: np.ndarray,
                   return_locations: Optional[bool] = False,
                   strides: Optional[np.ndarray] = None) -> Any:
    """
  Add quantum numbers arising from combining two or more charges into a
  single index, keeping only the quantum numbers that appear in `target_charges`.
  Equilvalent to using "combine_charges" followed by "reduce", but is
  generally much more efficient.
  Args:
    charges: List of `BaseCharge`, one for each leg of a 
      tensor. 
    flows: A list of bool, one for each leg of a tensor.
      with values `False` or `True` denoting inflowing and 
      outflowing charge direction, respectively.
    target_charges: n-by-D array of charges which should be kept,
      with `n` the number of symmetries.
    return_locations: If `True` return the location of the kept
      values of the fused charges
    strides: Index strides with which to compute the
      retured locations of the kept elements. Defaults to trivial strides (based on
      row major order).
  Returns:
    BaseCharge: the fused index after reduction.
    np.ndarray: Locations of the fused BaseCharge charges that were kept.
  """

    tensor_dims = [len(c) for c in charges]

    if len(charges) == 1:
        # reduce single index
        if strides is None:
            strides = np.array([1], dtype=SIZE_T)
        return charges[0].dual(flows[0]).reduce(
            target_charges,
            return_locations=return_locations,
            strides=strides[0])

    # find size-balanced partition of charges
    partition = _find_best_partition(tensor_dims)

    # compute quantum numbers for each partition
    left_ind = fuse_charges(charges[:partition], flows[:partition])
    right_ind = fuse_charges(charges[partition:], flows[partition:])

    # compute combined qnums
    comb_qnums = fuse_ndarray_charges(left_ind.unique_charges,
                                      right_ind.unique_charges,
                                      charges[0].charge_types)
    #special case of empty charges
    #pylint: disable=unsubscriptable-object
    if (comb_qnums.shape[1] == 0) or (len(left_ind.charge_labels)
                                      == 0) or (len(right_ind.charge_labels)
                                                == 0):
        obj = charges[0].__new__(type(charges[0]))
        obj.__init__(
            np.empty((charges[0].num_symmetries, 0), dtype=charges[0].dtype),
            np.empty(0, dtype=charges[0].label_dtype), charges[0].charge_types)
        if return_locations:
            return obj, np.empty(0, dtype=SIZE_T)
        return obj

    unique_comb_qnums, comb_labels = np.unique(comb_qnums,
                                               return_inverse=True,
                                               axis=1)
    num_unique = unique_comb_qnums.shape[1]

    # intersect combined qnums and target_charges
    reduced_qnums, label_to_unique, _ = intersect(unique_comb_qnums,
                                                  target_charges,
                                                  axis=1,
                                                  return_indices=True)
    map_to_kept = -np.ones(num_unique, dtype=charges[0].label_dtype)
    map_to_kept[label_to_unique] = np.arange(len(label_to_unique))
    #new_comb_labels is a matrix of shape (left_ind.num_unique, right_ind.num_unique)
    #each row new_comb_labels[n,:] contains integers values. Positions where values > 0
    #denote labels of right-charges that are kept.
    new_comb_labels = map_to_kept[comb_labels].reshape(
        [left_ind.num_unique, right_ind.num_unique])
    reduced_rows = [0] * left_ind.num_unique

    for n in range(left_ind.num_unique):
        temp_label = new_comb_labels[n, right_ind.charge_labels]
        reduced_rows[n] = temp_label[temp_label >= 0]

    reduced_labels = np.concatenate(
        [reduced_rows[n] for n in left_ind.charge_labels])
    obj = charges[0].__new__(type(charges[0]))
    obj.__init__(reduced_qnums, reduced_labels, charges[0].charge_types)

    if return_locations:
        row_locs = [0] * left_ind.num_unique
        if strides is not None:
            # computed locations based on non-trivial strides
            row_pos = fuse_stride_arrays(tensor_dims[:partition],
                                         strides[:partition])
            col_pos = fuse_stride_arrays(tensor_dims[partition:],
                                         strides[partition:])
        for n in range(left_ind.num_unique):
            temp_label = new_comb_labels[n, right_ind.charge_labels]
            temp_keep = temp_label >= 0
            if strides is not None:
                row_locs[n] = col_pos[temp_keep]
            else:
                row_locs[n] = np.where(temp_keep)[0]

        if strides is not None:
            reduced_locs = np.concatenate([
                row_pos[n] + row_locs[left_ind.charge_labels[n]]
                for n in range(left_ind.dim)
            ])
        else:
            reduced_locs = np.concatenate([
                n * right_ind.dim + row_locs[left_ind.charge_labels[n]]
                for n in range(left_ind.dim)
            ])
        return obj, reduced_locs

    return obj