def contract_path(path: Tuple[List[Tuple[int,
                                         int]]], nodes: Iterable[AbstractNode],
                  output_edge_order: Sequence[Edge]) -> AbstractNode:
    """Contract `nodes` using `path`.

  Args:
    path: The contraction path as returned from `path_solver`.
    nodes: A collection of connected nodes.
    output_edge_order: A list of edges. Edges of the
      final node in `nodes`
      are reordered into `output_edge_order`;
  Returns:
    Final node after full contraction.
  """
    if len(path) == 0:
        return nodes

    for a, b in path:
        new_node = contract_between(nodes[a],
                                    nodes[b],
                                    allow_outer_product=True)
        nodes.append(new_node)
        nodes = utils.multi_remove(nodes, [a, b])

    # if the final node has more than one edge,
    # output_edge_order has to be specified
    final_node = nodes[0]  # nodes were connected, we checked this
    final_node.reorder_edges(output_edge_order)
    return final_node
示例#2
0
def base(net: network.TensorNetwork,
         algorithm: Callable[[List[Set[int]], Set[int], Dict[int, int]], List]
        ) -> network.TensorNetwork:
  """Base method for all `opt_einsum` contractors.

  Args:
    net: a TensorNetwork object. Should be connected.
    algorithm: `opt_einsum` contraction method to use.

  Returns:
    The network after full contraction.
  """
  net.check_connected()
  # First contract all trace edges
  edges = net.get_all_nondangling()
  for edge in edges:
    if edge in net and edge.is_trace():
      net.contract_parallel(edge)
  if not net.get_all_nondangling():
    # There's nothing to contract.
    return net

  # Then apply `opt_einsum`'s algorithm
  nodes = sorted(net.nodes_set)
  input_sets = utils.get_input_sets(net)
  output_set = utils.get_output_set(net)
  size_dict = utils.get_size_dict(net)
  path = algorithm(input_sets, output_set, size_dict)
  for a, b in path:
    new_node = nodes[a] @ nodes[b]
    nodes.append(new_node)
    nodes = utils.multi_remove(nodes, [a, b])
  return net
def _base_nodes(
        nodes: Iterable[BaseNode],
        algorithm: utils.Algorithm,
        output_edge_order: Optional[Sequence[Edge]] = None) -> BaseNode:
    """Base method for all `opt_einsum` contractors.

  Args:
    nodes: A collection of connected nodes.
    algorithm: `opt_einsum` contraction method to use.
    output_edge_order: An optional list of edges. Edges of the
      final node in `nodes_set`
      are reordered into `output_edge_order`;
      if final node has more than one edge,
      `output_edge_order` must be pronvided.

  Returns:
    Final node after full contraction.
  """
    nodes_set = set(nodes)
    check_connected(nodes_set)
    edges = get_all_edges(nodes_set)
    #output edge order has to be determinded before any contraction
    #(edges are refreshed after contractions)
    if output_edge_order is None:
        output_edge_order = list(get_subgraph_dangling(nodes))
        if len(output_edge_order) > 1:
            raise ValueError(
                "The final node after contraction has more than "
                "one remaining edge. In this case `output_edge_order` "
                "has to be provided.")

    if set(output_edge_order) != get_subgraph_dangling(nodes):
        raise ValueError("output edges are not equal to the remaining "
                         "non-contracted edges of the final node.")

    for edge in edges:
        if not edge.is_disabled:  #if its disabled we already contracted it
            if edge.is_trace():
                nodes_set.remove(edge.node1)
                nodes_set.add(contract_parallel(edge))

    if len(nodes_set) == 1:
        # There's nothing to contract.
        return list(nodes_set)[0].reorder_edges(output_edge_order)

    # Then apply `opt_einsum`'s algorithm
    path, nodes = utils.get_path(nodes_set, algorithm)
    for a, b in path:
        new_node = nodes[a] @ nodes[b]
        nodes.append(new_node)
        nodes = utils.multi_remove(nodes, [a, b])

    # if the final node has more than one edge,
    # output_edge_order has to be specified
    final_node = nodes[0]  # nodes were connected, we checked this
    final_node.reorder_edges(output_edge_order)
    return final_node
def base(
    net: network.TensorNetwork,
    algorithm: Callable[[List[Set[int]], Set[int], Dict[int, int]], List],
    output_edge_order: Optional[Sequence[network_components.Edge]] = None
) -> network.TensorNetwork:
    """Base method for all `opt_einsum` contractors.

  Args:
    net: a TensorNetwork object. Should be connected.
    algorithm: `opt_einsum` contraction method to use.
    output_edge_order: An optional list of edges. Edges of the 
      final node in `nodes_set` 
      are reordered into `output_edge_order`; 
      if final node has more than one edge, 
      `output_edge_order` must be provided.
  Returns:
    The network after full contraction.
  """

    net.check_connected()
    # First contract all trace edges
    edges = net.get_all_nondangling()
    for edge in edges:
        if edge in net and edge.is_trace():
            net.contract_parallel(edge)
    if not net.get_all_nondangling():
        # There's nothing to contract.
        return net

    # Then apply `opt_einsum`'s algorithm
    nodes = sorted(net.nodes_set)
    input_sets = utils.get_input_sets(net)
    output_set = utils.get_output_set(net)
    size_dict = utils.get_size_dict(net)
    path = algorithm(input_sets, output_set, size_dict)
    for a, b in path:
        new_node = nodes[a] @ nodes[b]
        nodes.append(new_node)
        nodes = utils.multi_remove(nodes, [a, b])

    # if the final node has more than one edge,
    # output_edge_order has to be specified
    final_node = net.get_final_node()
    if (len(final_node.edges) <= 1) and (output_edge_order is None):
        output_edge_order = list(
            (net.get_all_edges() - net.get_all_nondangling()))
    elif (len(final_node.edges) > 1) and (output_edge_order is None):
        raise ValueError("if the final node has more than one dangling edge"
                         " `output_edge_order` has to be provided")

    if set(output_edge_order) != (net.get_all_edges() -
                                  net.get_all_nondangling()):
        raise ValueError("output edges are not all dangling.")

    final_node.reorder_edges(output_edge_order)
    return net
def _base_network(net: TensorNetwork,
                  algorithm: utils.Algorithm,
                  output_edge_order: Optional[Sequence[Edge]] = None,
                  ignore_edge_order: bool = False) -> TensorNetwork:
    """Base method for all `opt_einsum` contractors.

  Args:
    net: a TensorNetwork object. Should be connected.
    algorithm: `opt_einsum` contraction method to use.
    output_edge_order: An optional list of edges. Edges of the
      final node in `nodes_set`
      are reordered into `output_edge_order`;
      if final node has more than one edge,
      `output_edge_order` must be provided.
    ignore_edge_order: An option to ignore the output edge
      order.

  Returns:
    The network after full contraction.
  """
    net.check_connected()
    # First contract all trace edges
    edges = net.get_all_nondangling()
    for edge in edges:
        if edge in net and edge.is_trace():
            net.contract_parallel(edge)
    if not net.get_all_nondangling():
        # There's nothing to contract.
        return net

    # Then apply `opt_einsum`'s algorithm
    path, nodes = utils.get_path(net, algorithm)
    for a, b in path:
        new_node = nodes[a] @ nodes[b]
        nodes.append(new_node)
        nodes = utils.multi_remove(nodes, [a, b])

    # if the final node has more than one edge,
    # output_edge_order has to be specified
    final_node = net.get_final_node()

    if not ignore_edge_order:
        if (len(final_node.edges) <= 1) and (output_edge_order is None):
            output_edge_order = list(
                (net.get_all_edges() - net.get_all_nondangling()))
        elif (len(final_node.edges) > 1) and (output_edge_order is None):
            raise ValueError(
                "The final node after contraction has more than "
                "one dangling edge. In this case `output_edge_order` "
                "has to be provided.")
        if set(output_edge_order) != (net.get_all_edges() -
                                      net.get_all_nondangling()):
            raise ValueError("output edges are not all dangling.")

        final_node.reorder_edges(output_edge_order)
    return net
示例#6
0
def contract_path(path: Tuple[List[Tuple[int,
                                         int]]], nodes: Iterable[AbstractNode],
                  output_edge_order: Sequence[Edge]) -> AbstractNode:
    """Contract `nodes` using `path`.

  Args:
    path: The contraction path as returned from `path_solver`.
    nodes: A collection of connected nodes.
    output_edge_order: A list of edges. Edges of the
      final node in `nodes`
      are reordered into `output_edge_order`;
  Returns:
    Final node after full contraction.
  """
    edges = get_all_edges(nodes)
    for edge in edges:
        if not edge.is_disabled:  #if its disabled we already contracted it
            if edge.is_trace():
                contract_parallel(edge)

    if len(nodes) == 1:
        newnode = nodes[0].copy()
        for edge in nodes[0].edges:
            redirect_edge(edge, newnode, nodes[0])
        return newnode.reorder_edges(output_edge_order)

    if len(path) == 0:
        return nodes

    for p in path:
        if len(p) > 1:
            a, b = p
            new_node = contract_between(nodes[a],
                                        nodes[b],
                                        allow_outer_product=True)
            nodes.append(new_node)
            nodes = utils.multi_remove(nodes, [a, b])

        elif len(p) == 1:
            a = p[0]
            node = nodes.pop(a)
            new_node = contract_trace_edges(node)
            nodes.append(new_node)

    # if the final node has more than one edge,
    # output_edge_order has to be specified
    final_node = nodes[0]  # nodes were connected, we checked this
    #some contractors miss trace edges
    final_node = contract_trace_edges(final_node)
    final_node.reorder_edges(output_edge_order)
    return final_node