示例#1
0
def get_dataflow(path, is_train, img_path=None):
    ds = CocoPose(path, img_path, is_train)  # read data from lmdb
    if is_train:
        ds = MapData(ds, read_image_url)
        ds = MapDataComponent(ds, pose_random_scale)
        ds = MapDataComponent(ds, pose_rotation)
        ds = MapDataComponent(ds, pose_flip)
        ds = MapDataComponent(ds, pose_resize_shortestedge_random)
        ds = MapDataComponent(ds, pose_crop_random)
        ds = MapData(ds, pose_to_img)
        # augs = [
        #     imgaug.RandomApplyAug(imgaug.RandomChooseAug([
        #         imgaug.GaussianBlur(max_size=3)
        #     ]), 0.7)
        # ]
        # ds = AugmentImageComponent(ds, augs)
        ds = PrefetchData(ds, 1000, multiprocessing.cpu_count() * 4)
    else:
        ds = MultiThreadMapData(ds,
                                nr_thread=16,
                                map_func=read_image_url,
                                buffer_size=1000)
        ds = MapDataComponent(ds, pose_resize_shortestedge_fixed)
        ds = MapDataComponent(ds, pose_crop_center)
        ds = MapData(ds, pose_to_img)
        ds = PrefetchData(ds, 100, multiprocessing.cpu_count() // 4)

    return ds
示例#2
0
def get_dataflow_batch(path, is_train, batchsize, img_path=None):
    logger.info('dataflow img_path=%s' % img_path)
    ds = get_dataflow(path, is_train, img_path=img_path)
    ds = BatchData(ds, batchsize)
    if is_train:
        ds = PrefetchData(ds, 10, 2)
    else:
        ds = PrefetchData(ds, 50, 2)

    return ds
示例#3
0
def get_imagenet_dataflow(datadir,
                          name,
                          batch_size,
                          augmentors,
                          parallel=None):
    """
    See explanations in the tutorial:
    http://tensorpack.readthedocs.io/en/latest/tutorial/efficient-dataflow.html
    """
    assert name in ['train', 'val', 'test']
    assert datadir is not None
    assert isinstance(augmentors, list)
    isTrain = name == 'train'
    if parallel is None:
        parallel = min(40, multiprocessing.cpu_count() // 6)
    if isTrain:
        ds = dataset.ILSVRC12(datadir, name, shuffle=True)
        ds = AugmentImageComponent(ds, augmentors, copy=False)
        if parallel < 16:
            logger.warning(
                "DataFlow may become the bottleneck when too few processes are used."
            )

        ds = PrefetchData(ds, 1000, parallel)
        ds = BatchData(ds, batch_size, remainder=False)
    else:
        ds = dataset.ILSVRC12Files(datadir, name, shuffle=False)
        aug = imgaug.AugmentorList(augmentors)

        def mapf(dp):
            fname, cls = dp
            im = np.zeros((256, 256, 3), dtype=np.uint8)
            for _ in range(30):
                try:
                    im = cv2.imread(fname, cv2.IMREAD_COLOR)
                    im = aug.augment(im)
                    break
                except Exception as e:
                    logger.warning(str(e), 'file=', fname)
                    time.sleep(1)
            return im, cls

        ds = MultiThreadMapData(ds,
                                parallel,
                                mapf,
                                buffer_size=2000,
                                strict=True)
        ds = BatchData(ds, batch_size, remainder=True)
        ds = PrefetchData(ds, 100, 1)
    return ds
示例#4
0
def get_test_valid_split_labels():
    ds_train = CellImageDataManagerTrainAll(master_dir_train)
    ds_train = MapDataComponent(ds_train, random_crop_224)
    ds_train = PrefetchData(ds_train, 1000, 12)
    ds_train_img = ds_train.get_data()

    features = []
    train_lists = []
    valid_lists = []
    for idx, dp in tqdm(enumerate(ds_train_img)):
        img = np.asarray(dp[0].image(is_gray=False))
        img = np.ndarray.flatten(img)
        features.append(img)

    features = np.stack(features, axis=0)

    labels = cluster_features(features, n_clusters=n_clusters)

    idx_labels = []
    for i in range(n_clusters):
        idx_labels.append(np.transpose(np.argwhere((labels == i))))

    # Split train and valid data set
    for n in range(n_clusters):
        train_lists.extend(idx_labels[n][:, :int(idx_labels[n].shape[1] * ratio)])
        valid_lists.extend(idx_labels[n][:, int(idx_labels[n].shape[1] * ratio):])

    for n in range(n_clusters):
        np.random.shuffle(train_lists[n])
        np.random.shuffle(valid_lists[n])

    return train_lists, valid_lists
示例#5
0
def get_dataflow(path, is_train):
    ds = CocoPoseLMDB(path, is_train)  # read data from lmdb
    if is_train:
        ds = MapDataComponent(ds, pose_random_scale)
        ds = MapDataComponent(ds, pose_rotation)
        ds = MapDataComponent(ds, pose_flip)
        ds = MapDataComponent(ds, pose_resize_shortestedge_random)
        ds = MapDataComponent(ds, pose_crop_random)
        ds = MapData(ds, pose_to_img)
        augs = [
            imgaug.RandomApplyAug(
                imgaug.RandomChooseAug([
                    imgaug.BrightnessScale((0.6, 1.4), clip=False),
                    imgaug.Contrast((0.7, 1.4), clip=False),
                    imgaug.GaussianBlur(max_size=3)
                ]), 0.7),
        ]
        ds = AugmentImageComponent(ds, augs)
    else:
        ds = MapDataComponent(ds, pose_resize_shortestedge_fixed)
        ds = MapDataComponent(ds, pose_crop_center)
        ds = MapData(ds, pose_to_img)

    ds = PrefetchData(ds, 1000, multiprocessing.cpu_count())

    return ds
def get_downsampled_imagenet_augmented_data(subset, options,
        do_multiprocess=True, do_validation=False, shuffle=None):
    isTrain = subset == 'train' and do_multiprocess
    shuffle = shuffle if shuffle is not None else isTrain

    reret = re.search(r'^imagenet([0-9]*)$', options.ds_name)
    input_size = int(reret.group(1))

    ds = DownsampledImageNet(_data_batch_dir(options.data_dir, input_size),\
         subset, shuffle, input_size, do_validation=do_validation)

    pp_mean = ds.mean_img
    paste_size = ds.input_size * 5 // 4
    crop_size = ds.input_size
    if isTrain:
        augmentors = [
            imgaug.CenterPaste((paste_size, paste_size)),
            imgaug.RandomCrop((crop_size, crop_size)),
            imgaug.Flip(horiz=True),
            imgaug.MapImage(lambda x: (x - pp_mean)/128.0),
        ]
    else:
        augmentors = [
            imgaug.MapImage(lambda x: (x - pp_mean)/128.0)
        ]
    ds = AugmentImageComponent(ds, augmentors)
    ds = BatchData(ds, options.batch_size // options.nr_gpu, remainder=not isTrain)
    if do_multiprocess:
        ds = PrefetchData(ds, 4, 2)
    return ds
示例#7
0
def generate_dataflow(dataset, option):
    if option['number_of_cores'] == -1:
        option['number_of_cores'] = mp.cpu_count()
    
    ds = DataFlow(dataset, option)
    ds = AugmentImageComponent(ds, option['augmentors'], copy = False)
    
    if option['number_of_cores'] < 16:
        print('[!} Warning = DataFlow may become the bottleneck when too few processes are used.')
    
    ds = PrefetchData(ds, option['num_prefetch_for_dataset'], option['number_of_cores'])

    ds = BatchData(ds, option['batch_size'], remainder = option['remainder'])
    ds = PrefetchData(ds, option['num_prefetch_for_batch'], 2)
    
    return ds
示例#8
0
def get_remote_dataflow(port, nr_prefetch=1000, nr_thread=1):
    ipc = 'ipc:///tmp/ipc-socket'
    tcp = 'tcp://0.0.0.0:%d' % port
    data_loader = RemoteDataZMQ(ipc, tcp, hwm=10000)
    data_loader = BatchData(data_loader, batch_size=hp.train.batch_size)
    data_loader = PrefetchData(data_loader, nr_prefetch, nr_thread)
    return data_loader
def get_default_dataflow_batch(batchsize=32):
    ds = get_default_dataflow()
    ds = MapData(ds, data_to_segment_input)
    ds = BatchData(ds, batchsize)
    ds = MapDataComponent(ds, data_to_normalize01)
    ds = PrefetchData(ds, 10, 2)

    return ds
示例#10
0
def preprocess_data_flow(ds, options, is_train, do_multiprocess=False):
    ds_size = ds.size()
    while options.batch_size > ds_size:
        options.batch_size //= 2
    ds = BatchData(ds, max(1, options.batch_size // options.nr_gpu),
        remainder=not is_train)
    if do_multiprocess:
        ds = PrefetchData(ds, 5, 5)
    return ds
示例#11
0
def get_train_dataflow(roidb):
    """
    Tensorpack text dataflow.
    """
    ds = DataFromList(roidb, shuffle=True)
    preprocess = TextDataPreprocessor(cfg)

    buffer_size = cfg.num_threads * 10
    ds = MultiThreadMapData(ds, cfg.num_threads, preprocess, buffer_size=buffer_size)
    # ds = MultiProcessMapData(ds, cfg.num_workers, preprocess, buffer_size=buffer_size)
    ds = PrefetchData(ds, 100, multiprocessing.cpu_count() // 4)

    #ds = BatchData(ds, cfg.batch_size, remainder=True)

    return ds
def get_cifar_augmented_data(subset,
                             options,
                             do_multiprocess=True,
                             do_validation=False,
                             shuffle=None):
    isTrain = subset == 'train' and do_multiprocess
    shuffle = shuffle if shuffle is not None else isTrain
    if options.num_classes == 10 and options.ds_name == 'cifar10':
        ds = dataset.Cifar10(subset,
                             shuffle=shuffle,
                             do_validation=do_validation)
        cutout_length = 16
        n_holes = 1
    elif options.num_classes == 100 and options.ds_name == 'cifar100':
        ds = dataset.Cifar100(subset,
                              shuffle=shuffle,
                              do_validation=do_validation)
        cutout_length = 8
        n_holes = 1
    else:
        raise ValueError(
            'Number of classes must be set to 10(default) or 100 for CIFAR')
    logger.info('{} set has n_samples: {}'.format(subset, len(ds.data)))
    pp_mean = ds.get_per_pixel_mean()
    if isTrain:
        logger.info('Will do cut-out with length={} n_holes={}'.format(
            cutout_length, n_holes))
        augmentors = [
            imgaug.CenterPaste((40, 40)),
            imgaug.RandomCrop((32, 32)),
            imgaug.Flip(horiz=True),
            imgaug.MapImage(lambda x: (x - pp_mean) / 128.0),
            Cutout(length=cutout_length, n_holes=n_holes),
        ]
    else:
        augmentors = [imgaug.MapImage(lambda x: (x - pp_mean) / 128.0)]
    ds = AugmentImageComponent(ds, augmentors)
    ds = BatchData(ds,
                   options.batch_size // options.nr_gpu,
                   remainder=not isTrain)
    if do_multiprocess:
        ds = PrefetchData(ds, 3, 2)
    return ds
示例#13
0
 def get_data(self, train_or_test):
     isTrain = train_or_test == 'train'
     ds = dataset.Cifar10(train_or_test, dir='.')
     pp_mean = ds.get_per_pixel_mean()
     if isTrain:
         augmentors = [
             imgaug.CenterPaste((40, 40)),
             imgaug.RandomCrop((32, 32)),
             imgaug.Flip(horiz=True),
             # imgaug.Brightness(20),
             # imgaug.Contrast((0.6,1.4)),
             imgaug.MapImage(lambda x: x - pp_mean),
         ]
     else:
         augmentors = [imgaug.MapImage(lambda x: x - pp_mean)]
     ds = AugmentImageComponent(ds, augmentors)
     ds = BatchData(ds, self.batch_size, remainder=not isTrain)
     if isTrain:
         ds = PrefetchData(ds, 3, 2)
     return ds
def get_augmented_speech_commands_data(subset,
                                       options,
                                       do_multiprocess=True,
                                       shuffle=True):
    isTrain = subset == 'train' and do_multiprocess
    shuffle = shuffle if shuffle is not None else isTrain

    ds = SpeechCommandsDataFlow(
        os.path.join(options.data_dir, 'speech_commands_v0.02'), subset,
        shuffle, None)
    if isTrain:
        add_noise_func = functools.partial(_add_noise, noises=ds.noises)
    ds = MapDataComponent(ds, _pad_or_clip_to_desired_sample, index=0)
    ds = MapDataComponent(ds, _to_float, index=0)
    if isTrain:
        ds = MapDataComponent(ds, _time_shift, index=0)
        ds = MapData(ds, add_noise_func)
    ds = BatchData(ds,
                   options.batch_size // options.nr_gpu,
                   remainder=not isTrain)
    if do_multiprocess:
        ds = PrefetchData(ds, 4, 4)
    return ds
示例#15
0
 def __call__(self, n_prefetch=1000, n_thread=1):
     df = self
     df = BatchData(df, self.batch_size)
     df = PrefetchData(df, n_prefetch, n_thread)
     return df
示例#16
0
 def __call__(self, n_prefetch=1, n_thread=1):
     df = self
     df = BatchData(df, 1)
     df = PrefetchData(df, n_prefetch, n_thread)
     return df
示例#17
0
 def dataflow(self, nr_prefetch=1000, nr_thread=1):
     ds = self
     ds = BatchData(ds, self.batch_size)
     ds = PrefetchData(ds, nr_prefetch, nr_thread)
     return ds
def get_inat_augmented_data(subset,
                            options,
                            lmdb_dir=None,
                            year='2018',
                            do_multiprocess=True,
                            do_validation=False,
                            is_train=None,
                            shuffle=None,
                            n_allow=None):
    input_size = options.input_size if options.input_size else 224
    isTrain = is_train if is_train is not None else (subset == 'train'
                                                     and do_multiprocess)
    shuffle = shuffle if shuffle is not None else isTrain
    postfix = "" if n_allow is None else "_allow_{}".format(n_allow)

    #TODO: Parameterize the cv split to be consider
    #Currently hardcoding to 1
    cv = 1

    # When do_validation is True it will expect *cv_train and *cv_val lmdbs
    # Currently the cv_train split is always used
    if isTrain:
        postfix += '_cv_train_{}'.format(cv)
    elif do_validation:
        subset = 'train'
        postfix += '_cv_val_{}'.format(cv)

    if lmdb_dir == None:
        lmdb_path = os.path.join(options.data_dir, 'inat_lmdb',
                                 'inat2018_{}{}.lmdb'.format(subset, postfix))
    else:
        lmdb_path = os.path.join(
            options.data_dir, lmdb_dir,
            'inat{}_{}{}.lmdb'.format(year, subset, postfix))

    ds = LMDBData(lmdb_path, shuffle=False)
    if shuffle:
        ds = LocallyShuffleData(ds,
                                1024 * 80)  # This is 64G~80G in memory images
    ds = PrefetchData(ds, 1024 * 8, 1)  # prefetch around 8 G
    ds = LMDBDataPoint(ds)
    ds = MapDataComponent(ds, lambda x: cv2.imdecode(x, cv2.IMREAD_COLOR),
                          0)  # BGR uint8 data
    if isTrain:

        class Resize(imgaug.ImageAugmentor):
            """
            crop 8%~100% of the original image
            See `Going Deeper with Convolutions` by Google.
            """
            def _augment(self, img, _):
                h, w = img.shape[:2]
                area = h * w
                for _ in range(10):
                    targetArea = self.rng.uniform(0.08, 1.0) * area
                    aspectR = self.rng.uniform(0.75, 1.333)
                    ww = int(np.sqrt(targetArea * aspectR))
                    hh = int(np.sqrt(targetArea / aspectR))
                    if self.rng.uniform() < 0.5:
                        ww, hh = hh, ww
                    if hh <= h and ww <= w:
                        x1 = 0 if w == ww else self.rng.randint(0, w - ww)
                        y1 = 0 if h == hh else self.rng.randint(0, h - hh)
                        out = img[y1:y1 + hh, x1:x1 + ww]
                        out = cv2.resize(out, (input_size, input_size),
                                         interpolation=cv2.INTER_CUBIC)
                        return out
                out = cv2.resize(img, (input_size, input_size),
                                 interpolation=cv2.INTER_CUBIC)
                return out

        augmentors = [
            Resize(),
            imgaug.RandomOrderAug([
                imgaug.Brightness(30, clip=False),
                imgaug.Contrast((0.8, 1.2), clip=False),
                imgaug.Saturation(0.4),
                # rgb-bgr conversion
                imgaug.Lighting(0.1,
                                eigval=[0.2175, 0.0188, 0.0045][::-1],
                                eigvec=np.array([[-0.5675, 0.7192, 0.4009],
                                                 [-0.5808, -0.0045, -0.8140],
                                                 [-0.5836, -0.6948, 0.4203]],
                                                dtype='float32')[::-1, ::-1])
            ]),
            imgaug.Clip(),
            imgaug.Flip(horiz=True),
            imgaug.ToUint8()
        ]
    else:
        augmentors = [
            imgaug.ResizeShortestEdge(256),
            imgaug.CenterCrop((input_size, input_size)),
            imgaug.ToUint8()
        ]
    ds = AugmentImageComponent(ds, augmentors, copy=False)
    if do_multiprocess:
        ds = PrefetchDataZMQ(ds, min(24, multiprocessing.cpu_count()))
    ds = BatchData(ds,
                   options.batch_size // options.nr_gpu,
                   remainder=not isTrain)
    return ds
print(model)

model.compile(optimizer=Adam(lr=1e-4),
              loss=average_dice_coef_loss,
              metrics=[average_dice_coef])

df = MyDataFlow(train_data_dir,
                FLAGS.image_filename,
                FLAGS.label_filename,
                shuffle=True)
df = MapDataComponent(df, process.simple_preprocess_img, index=0)
df = MapDataComponent(df, process.sample_z_norm, index=0)
df = MapDataComponent(df, process.simple_preprocess_mask, index=1)
df = MapData(df, process.resize_whole)
df = MapData(df, process.data_aug)
df = PrefetchData(df, 2, 1)

gen_train = gen_data(df)

cb_early_stopping = EarlyStopping(monitor='loss', patience=100)
cbs = list()
cbs.append(
    ModelCheckpoint('{}/checkpoint_{}.h5'.format(FLAGS.checkpoint_dir,
                                                 FLAGS.chd_hcmp),
                    save_best_only=True,
                    monitor='loss',
                    period=1))
cbs.append(
    CSVLogger('{}/checkpoint.log'.format(FLAGS.checkpoint_dir), append=True))
#cbs.append(ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=0.001))
cbs.append(
示例#20
0
def get_dataflow_batch(path, is_train, batchsize):
    ds = get_dataflow(path, is_train)
    ds = BatchData(ds, batchsize)
    ds = PrefetchData(ds, 10, 2)

    return ds
示例#21
0
validataion_filenames = photo_filenames[_NUM_VALIDATION:]
class_names_to_ids = dict(zip(class_names, range(len(class_names))))

train_dataset = my_dataset_flow(training_filenames, 'train',
                                class_names_to_ids)

ds = AugmentImageComponent(train_dataset, [imgaug.Resize((299, 299))])
#ds = PrefetchData(ds, 1000, multiprocessing.cpu_count())
'''중요한 점은, 데이터를 읽는 부분이나 rotation, flip, crop 등의 augmentation을 정의하고 이를 PrefetchData에 넘기면 필요한 부분을 여러 프로세스로 띄워서 처리해준다는 점입니다.'''

batchsize = 256
ds = BatchData(ds, batchsize, use_list=True)

nr_prefetch = 10
nr_proc = 2
ds = PrefetchData(ds, nr_prefetch, nr_proc)

TestDataSpeed(ds).start()
j = 0
for i in ds.get_data():
    print(np.array(i[0]).shape)
    print(np.array(i[1]).shape)
placeholder = [
    tf.placeholder(dtype=tf.uint8, shape=(None, 299, 299, 3)),
    tf.placeholder(dtype=tf.uint8, shape=(None))
]
queue = tf.FIFOQueue(512, [x.dtype for x in placeholder])
thread = EnqueueThread(queue, ds, placeholder)

numberOfThreads = 1
qr = tf.train.QueueRunner(queue, [thread] * numberOfThreads)
def get_default_dataflow():
    ds = CellImageDataManagerTrain()
    ds = PrefetchData(ds, 1000, 12)

    return ds
示例#23
0
def get_tiny_imagenet_augmented_data(subset, options,
        do_multiprocess=True, is_train=None, shuffle=None):
    isTrain = is_train if is_train is not None else (subset == 'train' and do_multiprocess)
    shuffle = shuffle if shuffle is not None else isTrain

    lmdb_path = os.path.join(options.data_dir,
        'tiny_imagenet_lmdb', 'tiny_imagenet_{}.lmdb'.format(subset))
    # since tiny imagenet is small (200MB zipped) we can shuffle all directly.
    # we skipped the LocallyShuffleData and PrefetchData routine.
    ds = LMDBData(lmdb_path, shuffle=shuffle)
    ds = LMDBDataPoint(ds)
    ds = MapDataComponent(ds, lambda x: cv2.imdecode(x, cv2.IMREAD_COLOR), 0)
    img_size = 64
    if isTrain:
        class Resize(imgaug.ImageAugmentor):
            """
            crop 8%~100% of the original image
            See `Going Deeper with Convolutions` by Google.
            """
            def _augment(self, img, _):
                h, w = img.shape[:2]
                area = h * w
                for _ in range(10):
                    targetArea = self.rng.uniform(0.3, 1.0) * area
                    aspectR = self.rng.uniform(0.75, 1.333)
                    ww = int(np.sqrt(targetArea * aspectR))
                    hh = int(np.sqrt(targetArea / aspectR))
                    if self.rng.uniform() < 0.5:
                        ww, hh = hh, ww
                    if hh <= h and ww <= w:
                        x1 = 0 if w == ww else self.rng.randint(0, w - ww)
                        y1 = 0 if h == hh else self.rng.randint(0, h - hh)
                        out = img[y1:y1 + hh, x1:x1 + ww]
                        out = cv2.resize(out, (img_size, img_size), interpolation=cv2.INTER_CUBIC)
                        return out
                out = cv2.resize(img, (img_size, img_size), interpolation=cv2.INTER_CUBIC)
                return out

        augmentors = [
            Resize(),
            imgaug.RandomOrderAug(
                [imgaug.Brightness(30, clip=False),
                 imgaug.Contrast((0.8, 1.2), clip=False),
                 imgaug.Saturation(0.4),
                 # rgb-bgr conversion
                 imgaug.Lighting(0.1,
                                 eigval=[0.2175, 0.0188, 0.0045][::-1],
                                 eigvec=np.array(
                                     [[-0.5675, 0.7192, 0.4009],
                                      [-0.5808, -0.0045, -0.8140],
                                      [-0.5836, -0.6948, 0.4203]],
                                     dtype='float32')[::-1, ::-1]
                                 )]),
            imgaug.Clip(),
            imgaug.Flip(horiz=True),
            imgaug.ToUint8()
        ]
    else:
        augmentors = [
            imgaug.ResizeShortestEdge(72),
            imgaug.CenterCrop((img_size, img_size)),
            imgaug.ToUint8()
        ]
    ds = AugmentImageComponent(ds, augmentors, copy=False)
    ds = BatchData(ds, options.batch_size // options.nr_gpu, remainder=not isTrain)
    if do_multiprocess:
        ds = PrefetchData(ds, nr_prefetch=4, nr_proc=4)
    return ds
示例#24
0
print(model)

model.compile(optimizer=Adam(lr=1e-4),
              loss=average_dice_coef_loss,
              metrics=[average_dice_coef])

df = MyDataFlow(train_data_dir,
                FLAGS.image_filename,
                FLAGS.label_filename,
                shuffle=True)
df = MapDataComponent(df, process.simple_preprocess_img, index=0)
df = MapDataComponent(df, process.sample_z_norm, index=0)
df = MapDataComponent(df, process.simple_preprocess_mask, index=1)
df = MapData(df, process.resize_whole)
df = MapData(df, process.data_aug)
df = PrefetchData(df, 8, 4)

gen_train = gen_data(df)

cbs = list()
cbs.append(
    ModelCheckpoint('{}/checkpoint_{}_{}.h5'.format(FLAGS.checkpoint_dir,
                                                    FLAGS.chd_hcmp,
                                                    FLAGS.task_detail),
                    save_best_only=True,
                    monitor='loss',
                    period=1))
cbs.append(
    CSVLogger('{}/checkpoint.log'.format(FLAGS.checkpoint_dir), append=True))
#cbs.append(ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=0.001))
#cbs.append(TensorBoard(log_dir='{}'.format(FLAGS.checkpoint_dir), histogram_freq=0,