示例#1
0
def DeConv3D(x, out_channel, kernel_shape,
             stride, padding='SAME',
             W_init=None, b_init=None,
             nl=tf.identity, use_bias=True,
             data_format='NDHWC'):
    
    in_shape = x.get_shape().as_list()
    channel_axis = 4
    in_channel = in_shape[channel_axis]
    
    assert in_channel is not None, "[DeConv3D] Input cannot have unknown channel!"
    assert isinstance(out_channel, int), out_channel
    
    if W_init is None:
        W_init = tf.variance_scaling_initializer(scale=2.0)
    if b_init is None:
        b_init = tf.constant_initializer()
    
    with rename_get_variable({'kernel': 'W', 'bias': 'b'}):
        layer = tf.layers.Conv3DTranspose(
            out_channel, kernel_shape,
            strides=stride, padding=padding,
            data_format='channels_last' if data_format == 'NDHWC' else 'channels_first',
            activation=lambda x: nl(x, name='output'),
            use_bias=use_bias,
            kernel_initializer=W_init,
            bias_initializer=b_init,
            trainable=True)
        ret = layer.apply(x, scope=tf.get_variable_scope())
        
    ret.variables = VariableHolder(W=layer.kernel)
    if use_bias:
        ret.variables.b = layer.bias
    return ret
示例#2
0
def mpusim_fully_connected(inputs,
                            units,
                            activation=None,
                            use_bias=True,
                            kernel_initializer=None,
                            bias_initializer=tf.zeros_initializer(),
                            kernel_regularizer=None,
                            bias_regularizer=None,
                            activity_regularizer=None,
                            activations_datatype_size_byte=1,
                            weights_datatype_size_byte=1,
                            results_datatype_size_byte=4,
                            systolic_array_height=256,
                            systolic_array_width=256,
                            activation_fifo_depth=8,
                            accumulator_array_height=4096,
                            log_file_output_dir='.',
                            model_name='unnamed'):
    """
    A wrapper around `mpusim_fc`.
    One difference to maintain backward-compatibility:
    Default weight initializer is variance_scaling_initializer(2.0).
    Variable Names:
    * ``W``: weights of shape [in_dim, out_dim]
    * ``b``: bias
    """
    if kernel_initializer is None:
        if get_tf_version_tuple() <= (1, 12):
            kernel_initializer = tf.contrib.layers.variance_scaling_initializer(2.0)  # deprecated
        else:
            kernel_initializer = tf.keras.initializers.VarianceScaling(2.0, distribution='untruncated_normal')

    inputs = batch_flatten(inputs)
    with rename_get_variable({'kernel': 'W', 'bias': 'b'}):
        layer = mpusim_fc(units=units,
                            activation=activation,
                            use_bias=use_bias,
                            kernel_initializer=kernel_initializer,
                            bias_initializer=bias_initializer,
                            kernel_regularizer=kernel_regularizer,
                            bias_regularizer=bias_regularizer,
                            activity_regularizer=activity_regularizer,
                            activations_datatype_size_byte=activations_datatype_size_byte,
                            weights_datatype_size_byte=weights_datatype_size_byte,
                            results_datatype_size_byte=results_datatype_size_byte,
                            systolic_array_height=systolic_array_height,
                            systolic_array_width=systolic_array_width,
                            activation_fifo_depth=activation_fifo_depth,
                            accumulator_array_height=accumulator_array_height,
                            log_file_output_dir=log_file_output_dir,
                            model_name=model_name,
                            _reuse=tf.get_variable_scope().reuse)
        ret = layer.apply(inputs, scope=tf.get_variable_scope())
        ret = tf.identity(ret, name='output')

    ret.variables = VariableHolder(W=layer.kernel)
    
    if use_bias:
        ret.variables.b = layer.bias
    return ret
示例#3
0
文件: Models.py 项目: tmquan/i2Seg
def Conv3D(
        inputs,
        filters,
        kernel_size,
        strides=(1, 1, 1),
        padding='same',
        data_format='channels_last',
        dilation_rate=(1, 1, 1),
        activation=None,
        use_bias=True,
        kernel_initializer=tf.contrib.layers.variance_scaling_initializer(2.0),
        bias_initializer=tf.zeros_initializer(),
        kernel_regularizer=None,
        bias_regularizer=None,
        activity_regularizer=None,
        split=1):
    """
    A wrapper around `tf.layers.Conv3D`.
    Some differences to maintain backward-compatibility:
    1. Default kernel initializer is variance_scaling_initializer(2.0).
    2. Default padding is 'same'.
    3. Support 'split' argument to do group conv.
    Variable Names:
    * ``W``: weights
    * ``b``: bias
    """
    if split == 1:
        with rename_get_variable({'kernel': 'W', 'bias': 'b'}):
            layer = tf.layers.Conv3D(
                filters,
                kernel_size,
                strides=strides,
                padding=padding,
                data_format=data_format,
                dilation_rate=dilation_rate,
                activation=activation,
                use_bias=use_bias,
                kernel_initializer=kernel_initializer,
                bias_initializer=bias_initializer,
                kernel_regularizer=kernel_regularizer,
                bias_regularizer=bias_regularizer,
                activity_regularizer=activity_regularizer,
                _reuse=tf.get_variable_scope().reuse)
            ret = layer.apply(inputs, scope=tf.get_variable_scope())
            ret = tf.identity(ret, name='output')

        ret.variables = VariableHolder(W=layer.kernel)
        if use_bias:
            ret.variables.b = layer.bias

    else:
        # group conv implementation
        pass
    return ret
示例#4
0
def GrConv2D(x,
             out_channel,
             kernel_shape,
             padding='SAME',
             stride=1,
             dilation_rate=1,
             W_init=None,
             b_init=None,
             nl=tf.identity,
             split=1,
             use_bias=True,
             data_format='channels_last'):

    if data_format == 'NHWC' or data_format == 'channels_last':
        data_format = 'channels_last'
    elif data_format == 'NCHW' or data_format == 'channels_first':
        data_format = 'channels_first'
    else:
        print "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa unknown data format"
    in_shape = x.get_shape().as_list()
    channel_axis = 3 if data_format == 'NHWC' else 1
    in_channel = in_shape[channel_axis]
    assert in_channel is not None, "[GrConv2D] Input cannot have unknown channel!"
    assert in_channel % split == 0
    assert out_channel % split == 0

    kernel_shape = shape2d(kernel_shape)
    padding = padding.upper()
    filter_shape = kernel_shape + [in_channel / split, out_channel]
    stride = shape2d(stride)

    if W_init is None:
        W_init = tf.contrib.layers.variance_scaling_initializer()
    if b_init is None:
        b_init = tf.constant_initializer()

    with rename_get_variable({'kernel': 'W', 'bias': 'b'}):
        layer = tf.layers.Conv2D(filters=out_channel,
                                 kernel_size=kernel_shape,
                                 strides=stride,
                                 padding=padding,
                                 data_format=data_format,
                                 dilation_rate=dilation_rate,
                                 activation=lambda x: nl(x, name='output'),
                                 use_bias=use_bias,
                                 kernel_initializer=W_init,
                                 bias_initializer=b_init,
                                 trainable=True)
        ret = layer.apply(x, scope=tf.get_variable_scope())

    ret.variables = VariableHolder(W=layer.kernel)
    if use_bias:
        ret.variables.b = layer.bias
    return ret
示例#5
0
def Conv3DTranspose(
        inputs,
        filters,
        kernel_size,
        strides=(1, 1, 1),
        padding='same',
        data_format='channels_last',
        activation=None,
        use_bias=False,
        kernel_initializer=tf.contrib.layers.
    variance_scaling_initializer(
        2.0
    ),  #tf.contrib.layers.xavier_initializer(), #tf.initializers.variance_scaling(distribution='uniform'),
        bias_initializer=tf.zeros_initializer(),
        kernel_regularizer=None,
        bias_regularizer=None,
        activity_regularizer=None):
    """
	A wrapper around `tf.layers.Conv2DTranspose`.
	Some differences to maintain backward-compatibility:
	1. Default kernel initializer is variance_scaling_initializer(2.0),.
	2. Default padding is 'same'
	Variable Names:
	* ``W``: weights
	* ``b``: bias
	"""

    with rename_get_variable({'kernel': 'W', 'bias': 'b'}):
        layer = tf.layers.Conv3DTranspose(
            filters,
            kernel_size,
            strides=strides,
            padding=padding,
            data_format=data_format,
            activation=activation,
            use_bias=use_bias,
            kernel_initializer=kernel_initializer,
            bias_initializer=bias_initializer,
            kernel_regularizer=kernel_regularizer,
            bias_regularizer=bias_regularizer,
            activity_regularizer=activity_regularizer)
        ret = layer.apply(inputs, scope=tf.get_variable_scope())

    ret.variables = VariableHolder(W=layer.kernel)
    if use_bias:
        ret.variables.b = layer.bias
    return tf.identity(ret, name='output')
def Conv3D(
        inputs,
        filters,
        kernel_size,
        strides=(1, 1, 1),
        padding='same',
        data_format='channels_last',
        dilation_rate=(1, 1, 1),
        activation=None,
        use_bias=True,
        kernel_initializer=tf.contrib.layers.variance_scaling_initializer(2.0),
        bias_initializer=tf.zeros_initializer(),
        kernel_regularizer=None,
        bias_regularizer=None,
        activity_regularizer=None,
        split=1):
    """
    A wrapper around `tf.layers.Conv2D`.
    Some differences to maintain backward-compatibility:
    1. Default kernel initializer is variance_scaling_initializer(2.0).
    2. Default padding is 'same'.
    3. Support 'split' argument to do group conv.
    Variable Names:
    * ``W``: weights
    * ``b``: bias
    """
    if split == 1:
        with rename_get_variable({'kernel': 'W', 'bias': 'b'}):
            layer = tf.layers.Conv3D(filters,
                                     kernel_size,
                                     strides=strides,
                                     padding=padding,
                                     data_format=data_format,
                                     dilation_rate=dilation_rate,
                                     activation=activation,
                                     use_bias=use_bias,
                                     kernel_initializer=kernel_initializer,
                                     bias_initializer=bias_initializer,
                                     kernel_regularizer=kernel_regularizer,
                                     bias_regularizer=bias_regularizer,
                                     activity_regularizer=activity_regularizer)
            ret = layer.apply(inputs, scope=tf.get_variable_scope())
            ret = tf.identity(ret, name='output')

        ret.variables = VariableHolder(W=layer.kernel)
        if use_bias:
            ret.variables.b = layer.bias

    else:
        # group conv implementation
        data_format = get_data_format(data_format, tfmode=False)
        in_shape = inputs.get_shape().as_list()
        channel_axis = 3 if data_format == 'NHWC' else 1
        in_channel = in_shape[channel_axis]
        assert in_channel is not None, "[Conv3D] Input cannot have unknown channel!"
        assert in_channel % split == 0

        assert kernel_regularizer is None and bias_regularizer is None and activity_regularizer is None, \
            "Not supported by group conv now!"

        out_channel = filters
        assert out_channel % split == 0
        assert dilation_rate == (1, 1) or get_tf_version_number(
        ) >= 1.5, 'TF>=1.5 required for group dilated conv'

        kernel_shape = shape2d(kernel_size)
        filter_shape = kernel_shape + [in_channel / split, out_channel]
        stride = shape4d(strides, data_format=data_format)

        kwargs = dict(data_format=data_format)
        if get_tf_version_number() >= 1.5:
            kwargs['dilations'] = shape4d(dilation_rate,
                                          data_format=data_format)

        W = tf.get_variable('W', filter_shape, initializer=kernel_initializer)

        if use_bias:
            b = tf.get_variable('b', [out_channel],
                                initializer=bias_initializer)

        inputs = tf.split(inputs, split, channel_axis)
        kernels = tf.split(W, split, 3)
        outputs = [
            tf.nn.conv2d(i, k, stride, padding.upper(), **kwargs)
            for i, k in zip(inputs, kernels)
        ]
        conv = tf.concat(outputs, channel_axis)
        if activation is None:
            activation = tf.identity
        ret = activation(tf.nn.bias_add(conv, b, data_format=data_format)
                         if use_bias else conv,
                         name='output')

        ret.variables = VariableHolder(W=W)
        if use_bias:
            ret.variables.b = b
    return ret
def MaskedConv2D(
        inputs,
        filters,
        kernel_size,
        strides=(1, 1),
        padding='same',
        data_format='channels_last',
        dilation_rate=(1, 1),
        activation=None,
        use_bias=True,
        kernel_initializer=None,
        bias_initializer=tf.zeros_initializer(),
        kernel_regularizer=None,
        bias_regularizer=None,
        activity_regularizer=None,
        split=1,
        masking=False):
    """
    A wrapper around `tf.layers.Conv2D`.
    Some differences to maintain backward-compatibility:

    1. Default kernel initializer is variance_scaling_initializer(2.0).
    2. Default padding is 'same'.
    3. Support 'split' argument to do group conv.

    Variable Names:

    * ``W``: weights
    * ``b``: bias
    """
    if kernel_initializer is None:
        if get_tf_version_tuple() <= (1, 12):
            kernel_initializer = tf.contrib.layers.variance_scaling_initializer(2.0)
        else:
            kernel_initializer = tf.keras.initializers.VarianceScaling(2.0, distribution='untruncated_normal')
    dilation_rate = shape2d(dilation_rate)

    if (masking == False) and (split == 1) and (dilation_rate == [1, 1]):
        # tf.layers.Conv2D has bugs with dilations (https://github.com/tensorflow/tensorflow/issues/26797)
        with rename_get_variable({'kernel': 'W', 'bias': 'b'}):
            layer = tf.layers.Conv2D(
                filters,
                kernel_size,
                strides=strides,
                padding=padding,
                data_format=data_format,
                dilation_rate=dilation_rate,
                activation=activation,
                use_bias=use_bias,
                kernel_initializer=kernel_initializer,
                bias_initializer=bias_initializer,
                kernel_regularizer=kernel_regularizer,
                bias_regularizer=bias_regularizer,
                activity_regularizer=activity_regularizer,
                _reuse=tf.get_variable_scope().reuse)
            ret = layer.apply(inputs, scope=tf.get_variable_scope())
            ret = tf.identity(ret, name='output')

        ret.variables = VariableHolder(W=layer.kernel)
        if use_bias:
            ret.variables.b = layer.bias

    else:
        if masking == True:
            assert split == 1, "Pruining group conv is not supported yet"

        # group conv implementation
        data_format = get_data_format(data_format, keras_mode=False)
        in_shape = inputs.get_shape().as_list()
        channel_axis = 3 if data_format == 'NHWC' else 1
        in_channel = in_shape[channel_axis]
        assert in_channel is not None, "[Conv2D] Input cannot have unknown channel!"
        assert in_channel % split == 0

        assert kernel_regularizer is None and bias_regularizer is None and activity_regularizer is None, \
            "Not supported by group conv or dilated conv!"

        out_channel = filters
        assert out_channel % split == 0
        assert dilation_rate == [1, 1] or get_tf_version_tuple() >= (1, 5), 'TF>=1.5 required for dilated conv.'

        kernel_shape = shape2d(kernel_size)
        filter_shape = kernel_shape + [in_channel / split, out_channel]
        stride = shape4d(strides, data_format=data_format)

        kwargs = dict(data_format=data_format)
        if get_tf_version_tuple() >= (1, 5):
            kwargs['dilations'] = shape4d(dilation_rate, data_format=data_format)

        W = tf.get_variable(
            'W', filter_shape, initializer=kernel_initializer)

        if use_bias:
            b = tf.get_variable('b', [out_channel], initializer=bias_initializer)

        if split == 1:
            if masking:
                W = pruning.apply_mask(W)
            conv = tf.nn.conv2d(inputs, W, stride, padding.upper(), **kwargs)
        else:
            conv = None
            if get_tf_version_tuple() >= (1, 13):
                try:
                    conv = tf.nn.conv2d(inputs, W, stride, padding.upper(), **kwargs)
                except ValueError:
                    log_once("CUDNN group convolution support is only available with "
                             "https://github.com/tensorflow/tensorflow/pull/25818 . "
                             "Will fall back to a loop-based slow implementation instead!", 'warn')
            if conv is None:
                inputs = tf.split(inputs, split, channel_axis)
                kernels = tf.split(W, split, 3)
                outputs = [tf.nn.conv2d(i, k, stride, padding.upper(), **kwargs)
                           for i, k in zip(inputs, kernels)]
                conv = tf.concat(outputs, channel_axis)

        ret = tf.nn.bias_add(conv, b, data_format=data_format) if use_bias else conv
        if activation is not None:
            ret = activation(ret)
        ret = tf.identity(ret, name='output')

        ret.variables = VariableHolder(W=W)
        if use_bias:
            ret.variables.b = b
    return ret
示例#8
0
def BatchNorm(inputs,
              axis=None,
              training=None,
              momentum=0.9,
              epsilon=1e-5,
              center=True,
              scale=True,
              beta_initializer=tf.zeros_initializer(),
              gamma_initializer=tf.ones_initializer(),
              virtual_batch_size=None,
              internal_update=False):
    """
    Mostly equivalent to `tf.layers.batch_normalization`, but different in
    the following:

    1. Accepts `data_format` when `axis` is None. For 2D input, this argument will be ignored.
    2. Default value for `momentum` and `epsilon` is different.
    3. Default value for `training` is automatically obtained from `TowerContext`.
    4. Support the `internal_update` option.

    Args:
        internal_update (bool): if False, add EMA update ops to
            `tf.GraphKeys.UPDATE_OPS`. If True, update EMA inside the layer
            by control dependencies.

    Variable Names:

    * ``beta``: the bias term. Will be zero-inited by default.
    * ``gamma``: the scale term. Will be one-inited by default. Input will be transformed by ``x * gamma + beta``.
    * ``mean/EMA``: the moving average of mean.
    * ``variance/EMA``: the moving average of variance.

    Note:
        1. About multi-GPU training: moving averages across GPUs are not aggregated.
           Batch statistics are computed independently.  This is consistent with most frameworks.
        2. Combinations of ``training`` and ``ctx.is_training``:
            * ``training == ctx.is_training``: standard BN, EMA are
                maintained during training and used during inference. This is
                the default.
            * ``training and not ctx.is_training``: still use batch statistics in inference.
            * ``not training and ctx.is_training``: use EMA to normalize in
                training. This is useful when you load a pre-trained BN and
                don't want to fine tune the EMA. EMA will not be updated in
                this case.
    """
    # parse shapes
    shape = inputs.get_shape().as_list()
    ndims = len(shape)

    assert axis is not None

    # parse training/ctx
    ctx = get_current_tower_context()
    if training is None:
        training = ctx.is_training
    training = bool(training)
    TF_version = get_tf_version_number()
    if not training and ctx.is_training:
        assert TF_version >= 1.4, \
            "Fine tuning a BatchNorm model with fixed statistics is only " \
            "supported after https://github.com/tensorflow/tensorflow/pull/12580 "
        if ctx.is_main_training_tower:  # only warn in first tower
            logger.warn(
                "[BatchNorm] Using moving_mean/moving_variance in training.")
        # Using moving_mean/moving_variance in training, which means we
        # loaded a pre-trained BN and only fine-tuning the affine part.

    coll_bk = backup_collection([tf.GraphKeys.UPDATE_OPS])
    with rename_get_variable({
            'moving_mean': 'mean/EMA',
            'moving_variance': 'variance/EMA'
    }):
        if TF_version >= 1.5:
            layer = tf.layers.BatchNormalization(
                axis=axis,
                momentum=momentum,
                epsilon=epsilon,
                center=center,
                scale=scale,
                beta_initializer=beta_initializer,
                gamma_initializer=gamma_initializer,
                virtual_batch_size=virtual_batch_size,
                fused=True,
                _reuse=tf.get_variable_scope().reuse)
        else:
            assert virtual_batch_size is None, "Feature not supported in this version of TF!"
            layer = tf.layers.BatchNormalization(
                axis=axis,
                momentum=momentum,
                epsilon=epsilon,
                center=center,
                scale=scale,
                beta_initializer=beta_initializer,
                gamma_initializer=gamma_initializer,
                fused=True,
                _reuse=tf.get_variable_scope().reuse)
        xn = layer.apply(inputs,
                         training=training,
                         scope=tf.get_variable_scope())

    # maintain EMA only on one GPU is OK, even in replicated mode.
    # because training time doesn't use EMA
    if ctx.is_main_training_tower:
        for v in layer.non_trainable_variables:
            add_model_variable(v)
    if not ctx.is_main_training_tower or internal_update:
        restore_collection(coll_bk)

    if training and internal_update:
        assert layer.updates
        with tf.control_dependencies(layer.updates):
            ret = tf.identity(xn, name='output')
    else:
        ret = tf.identity(xn, name='output')

    vh = ret.variables = VariableHolder(
        moving_mean=layer.moving_mean,
        mean=layer.moving_mean,  # for backward-compatibility
        moving_variance=layer.moving_variance,
        variance=layer.moving_variance)  # for backward-compatibility
    if scale:
        vh.gamma = layer.gamma
    if center:
        vh.beta = layer.beta
    return ret