示例#1
0
def rpn_head(featuremap):
    with tf.variable_scope('rpn'), \
            argscope(Conv2D, data_format='NCHW',
                     W_init=tf.random_normal_initializer(stddev=0.01)):
        hidden = Conv2D('conv0', featuremap, 1024, 3, nl=tf.nn.relu)

        label_logits = Conv2D('class', hidden, config.NR_ANCHOR, 1)
        box_logits = Conv2D('box', hidden, 4 * config.NR_ANCHOR, 1)
        # 1, NA(*4), im/16, im/16 (NCHW)

        label_logits = tf.transpose(label_logits, [0, 2, 3, 1])  # 1xfHxfWxNA
        label_logits = tf.squeeze(label_logits, 0)  # fHxfWxNA

        shp = tf.shape(box_logits)  # 1x(NAx4)xfHxfW
        box_logits = tf.transpose(box_logits, [0, 2, 3, 1])  # 1xfHxfWx(NAx4)
        box_logits = tf.reshape(box_logits,
                                tf.stack([shp[2], shp[3], config.NR_ANCHOR,
                                          4]))  # fHxfWxNAx4
    return label_logits, box_logits
示例#2
0
def maskrcnn_upXconv_head(feature, num_category, num_convs, norm=None):
    """
    Args:
        feature (N x C x s x s): size is 7 in C4 models and 14 in FPN models.
        num_category(int):
        num_convs (int): number of convolution layers
        norm (str or None): either None or 'GN'

    Returns:
        mask_logits (N x num_category x 2s x 2s):
    """
    assert norm in [None, 'GN'], norm
    l = feature
    with argscope(
        [Conv2D, Conv2DTranspose],
            data_format='channels_last',
            kernel_initializer=tf.variance_scaling_initializer(
                scale=2.0,
                mode='fan_out',
                distribution='untruncated_normal' if get_tf_version_tuple() >=
                (1, 12) else 'normal')):
        # c2's MSRAFill is fan_out
        for k in range(num_convs):
            l = Conv2D('fcn{}'.format(k),
                       l,
                       cfg.MRCNN.HEAD_DIM,
                       3,
                       activation=tf.nn.relu)
            if norm is not None:
                l = GroupNorm('gn{}'.format(k), l)
        l = Conv2DTranspose('deconv',
                            l,
                            cfg.MRCNN.HEAD_DIM,
                            2,
                            strides=2,
                            activation=tf.nn.relu)
        l = Conv2D(
            'conv',
            l,
            num_category,
            1,
            kernel_initializer=tf.random_normal_initializer(stddev=0.001))
    return l
示例#3
0
def encoder(i, freeze):
    """
    Pre-activated ResNet50 Encoder
    """

    d1 = Conv2D('conv0',  i, 64, 7, padding='valid', strides=1, activation=BNReLU)
    d1 = res_blk('group0', d1, [ 64,  64,  256], [1, 3, 1], 3, strides=1, freeze=freeze)                       
    
    d2 = res_blk('group1', d1, [128, 128,  512], [1, 3, 1], 4, strides=2, freeze=freeze)
    d2 = tf.stop_gradient(d2) if freeze else d2

    d3 = res_blk('group2', d2, [256, 256, 1024], [1, 3, 1], 6, strides=2, freeze=freeze)
    d3 = tf.stop_gradient(d3) if freeze else d3

    d4 = res_blk('group3', d3, [512, 512, 2048], [1, 3, 1], 3, strides=2, freeze=freeze)
    d4 = tf.stop_gradient(d4) if freeze else d4
    
    d4 = Conv2D('conv_bot',  d4, 1024, 1, padding='same')
    return [d1, d2, d3, d4]
示例#4
0
 def encoder_blk(name, feat_in, num_feats, has_down=False):
     with tf.variable_scope(name):
         feat = feat_in if not has_down else MaxPooling(
             'pool1', feat_in, 2, strides=2, padding='same')
         feat = Conv2D('conv_1',
                       feat,
                       num_feats,
                       3,
                       padding='valid',
                       strides=1,
                       activation=tf.nn.relu)
         feat = Conv2D('conv_2',
                       feat,
                       num_feats,
                       3,
                       padding='valid',
                       strides=1,
                       activation=tf.nn.relu)
         return feat
示例#5
0
def net(name, i, basis_filter_list, rot_matrix_list, nr_orients, filter_type, is_training):
    """
    Dense Steerable Filter CNN
    """

    dense_basis_list = [basis_filter_list[0],basis_filter_list[1]]
    dense_rot_list = [rot_matrix_list[0], rot_matrix_list[1]]

    with tf.variable_scope(name):

        c1 = GConv2D('ds_conv1', i, 8, 7, nr_orients, filter_type, basis_filter_list[1], rot_matrix_list[1], input_layer=True)
        c2 = GConv2D('ds_conv2', c1, 8, 7, nr_orients, filter_type, basis_filter_list[1], rot_matrix_list[1])
        p1 = MaxPooling('max_pool1', c2, 2)  
        ####
        
        d1 = g_dense_blk('dense1', p1, [32,8], [5,7], 2, nr_orients, filter_type, dense_basis_list, dense_rot_list, bn_init=False)
        c3 = GConv2D('ds_conv3', d1, 32, 5, nr_orients, filter_type, basis_filter_list[0], rot_matrix_list[0])
        p2 = MaxPooling('max_pool2', c3, 2, padding= 'valid') 
        ####

        d2 = g_dense_blk('dense2', p2, [32,8], [5,7], 2, nr_orients, filter_type, dense_basis_list, dense_rot_list, bn_init=False)
        c4 = GConv2D('ds_conv4', d2, 32, 5, nr_orients, filter_type, basis_filter_list[0], rot_matrix_list[0])
        p3 = MaxPooling('max_pool3', c4, 2, padding= 'valid') 
        ####

        d3 = g_dense_blk('dense3', p3, [32,8], [5,7], 3, nr_orients, filter_type, dense_basis_list, dense_rot_list, bn_init=False)
        c5 = GConv2D('ds_conv5', d3, 32, 5, nr_orients, filter_type, basis_filter_list[0], rot_matrix_list[0])
        p4 = MaxPooling('max_pool4', c5, 2, padding= 'valid')  
        ####

        d4 = g_dense_blk('dense4', p4, [32,8], [5,7], 3, nr_orients, filter_type, dense_basis_list, dense_rot_list, bn_init=False)
        c6 = GConv2D('ds_conv6', d4, 32, 5, nr_orients, filter_type, basis_filter_list[0], rot_matrix_list[0])
        p5 = AvgPooling('glb_avg_pool', c6, 6, padding= 'valid')
        p6 = GroupPool('orient_pool', p5, nr_orients, pool_type='max')
        ####

        c7 = Conv2D('conv3', p6, 96, 1, use_bias=True, nl=BNReLU)
        c7 = tf.layers.dropout(c7, rate=0.3, seed=5, training=is_training)
        c8 = Conv2D('conv4', c7, 96, 1, use_bias=True, nl=BNReLU)
        c8 = tf.layers.dropout(c8, rate=0.3, seed=5, training=is_training)

        return c8
示例#6
0
def LinearBottleneck(x, ich, och, kernel,
                     padding='SAME',
                     stride=1,
                     activation=BNPReLU,
                     t=3,
                     w_init=None):
    '''
    mobilenetv2 linear bottlenet.
    '''
    if active is None:
        active = True if kernel > 3 else False

    out = Conv2D(_get_conv_name(), x, int(ich*t), 1, activation=BNPReLU)
    out = DWConv(_get_dwconv_name(), out, kernel, padding, stride, w_init, activation=activation)
    out = Conv2D(_get_conv_name(), out, och, 1, activation=BNonly)
    if stride != 1:
        return out
    if ich != och:
        x = Conv2D(_get_conv_name(), x, int(och), 1, activation=BNonly)
    return x + out
示例#7
0
文件: resnet.py 项目: murph3d/WLD
def resnet_bottleneck(x, ch_out, stride, stride_first=False):
    """
    stride_first: originax resnet put stride on first conv. fb.resnet.torch put stride on second conv. # noqa
    """
    shortcut = x
    x = Conv2D('conv1',
               x,
               ch_out,
               1,
               stride=stride if stride_first else 1,
               nl=BNReLU)
    x = Conv2D('conv2',
               x,
               ch_out,
               3,
               stride=1 if stride_first else stride,
               nl=BNReLU)
    x = Conv2D('conv3', x, ch_out * 4, 1, nl=get_bn(zero_init=True))
    return x + resnet_shortcut(
        shortcut, ch_out * 4, stride, nl=get_bn(zero_init=False))
示例#8
0
def resnet_bottleneck(l, ch_out, stride):
    l, shortcut = l, l
    l = Conv2D('conv1', l, ch_out, 1, activation=BNReLU)
    if stride == 2:
        l = tf.pad(l, [[0, 0], [0, 0],
                       maybe_reverse_pad(0, 1),
                       maybe_reverse_pad(0, 1)])
        l = Conv2D('conv2',
                   l,
                   ch_out,
                   3,
                   strides=2,
                   activation=BNReLU,
                   padding='VALID')
    else:
        l = Conv2D('conv2', l, ch_out, 3, strides=stride, activation=BNReLU)
    l = Conv2D('conv3', l, ch_out * 4, 1, activation=get_bn(zero_init=True))
    ret = l + resnet_shortcut(
        shortcut, ch_out * 4, stride, activation=get_bn(zero_init=False))
    return tf.nn.relu(ret, name='output')
def resnet_bottleneck(l, ch_out, stride, stride_first=False):
    """
    stride_first: original resnet put stride on first conv. fb.resnet.torch put stride on second conv.
    """
    shortcut = l
    l = Conv2D('conv1',
               l,
               ch_out,
               1,
               strides=stride if stride_first else 1,
               activation=BNReLU)
    l = Grconv('conv2',
               l,
               ch_out,
               3,
               strides=1 if stride_first else stride,
               activation=BNReLU)
    l = Conv2D('conv3', l, ch_out * 4, 1, activation=get_bn(zero_init=True))
    return l + resnet_shortcut(
        shortcut, ch_out * 4, stride, activation=get_bn(zero_init=False))
示例#10
0
def conv_with_rn(gradient):
    out = Conv2D(
        'conv',
        gradient,
        gradient.get_shape()[3],
        1,
        strides=1,
        activation=get_rn(),
        kernel_initializer=tf.contrib.layers.variance_scaling_initializer(2.0))
    gradient = gradient + out
    return gradient
示例#11
0
def resnet_shortcut(l, n_out, stride, activation=tf.identity):
    n_in = l.get_shape().as_list()[1]
    if n_in != n_out:
        return Conv2D('convshortcut',
                      l,
                      n_out,
                      1,
                      strides=stride,
                      activation=activation)
    else:
        return l
示例#12
0
def resnet_shortcut(l, n_out, stride, activation=tf.identity):
    n_in = l.get_shape().as_list()[1 if is_data_format_nchw() else 3]
    if n_in != n_out:
        return Conv2D('convshortcut',
                      l,
                      n_out,
                      1,
                      stride=stride,
                      activation=activation)
    else:
        return l
示例#13
0
def resnet_shortcut(l, n_out, stride, activation=tf.identity):
    n_in = l.get_shape().as_list()[1]
    if n_in != n_out:  # change dimension when channel is not the same
        return Conv2D('convshortcut',
                      l,
                      n_out,
                      1,
                      strides=stride,
                      activation=activation)
    else:
        return l
示例#14
0
def denoising(name, l, embed=True, softmax=True):
    with tf.variable_scope(name):
        f = non_local_op(l, embed=embed, softmax=softmax)
        f = Conv2D('conv',
                   f,
                   l.shape[1],
                   1,
                   strides=1,
                   activation=get_bn(zero_init=True))
        l = l + f
    return l
def resnet_shortcut(l, n_out, stride, activation=tf.identity):
    n_in = l.shape[1]
    if n_in != n_out:   # change dimension when channel is not the same
        # TF's SAME mode output ceil(x/stride), which is NOT what we want when x is odd and stride is 2
        # In FPN mode, the images are pre-padded already.
        if not cfg.MODE_FPN and stride == 2:
            l = l[:, :, :-1, :-1]
        return Conv2D('convshortcut', l, n_out, 1,
                      strides=stride, activation=activation)
    else:
        return l
示例#16
0
def res_blk(name, l, ch, ksize, count, split=1, strides=1, freeze=False):
##########################################
#Resnet50 block
##########################################
    ch_in = l.get_shape().as_list()
    with tf.variable_scope(name):
        for i in range(0, count):
            with tf.variable_scope('block' + str(i)):  
                x = l if i == 0 else BNReLU('preact', l)
                x = Conv2D('conv1', x, ch[0], ksize[0], activation=BNReLU)
                x = Conv2D('conv2', x, ch[1], ksize[1], split=split, 
                                strides=strides if i == 0 else 1, activation=BNReLU)
                x = Conv2D('conv3', x, ch[2], ksize[2], activation=tf.identity)
                if (strides != 1 or ch_in[1] != ch[2]) and i == 0:
                    l = Conv2D('convshortcut', l, ch[2], 1, strides=strides)
                x = tf.stop_gradient(x) if freeze else x
                l = l + x
        # end of each group need an extra activation
        l = BNReLU('bnlast',l)  
    return l
示例#17
0
def maskrcnn_upXconv_head(feature, num_class, num_convs):
    """
    Args:
        feature (NxCx s x s): size is 7 in C4 models and 14 in FPN models.
        num_classes(int): num_category + 1
        num_convs (int): number of convolution layers

    Returns:
        mask_logits (N x num_category x 2s x 2s):
    """
    l = feature
    with argscope([Conv2D, Conv2DTranspose], data_format='channels_first',
                  kernel_initializer=tf.variance_scaling_initializer(
                      scale=2.0, mode='fan_out', distribution='normal')):
        # c2's MSRAFill is fan_out
        for k in range(num_convs):
            l = Conv2D('fcn{}'.format(k), l, config.MASKRCNN_HEAD_DIM, 3, activation=tf.nn.relu)
        l = Conv2DTranspose('deconv', l, config.MASKRCNN_HEAD_DIM, 2, strides=2, activation=tf.nn.relu)
        l = Conv2D('conv', l, num_class - 1, 1)
    return l
def non_local_op(l, embed, softmax):
    """
    Feature Denoising, Sec 4.2 & Fig 5.
    Args:
        embed (bool): whether to use embedding on theta & phi
        softmax (bool): whether to use gaussian (softmax) version or the dot-product version.
    """
    n_in, H, W = l.shape.as_list()[1:]
    if embed:
        theta = Conv2D(
            'embedding_theta',
            l,
            n_in / 2,
            1,
            strides=1,
            kernel_initializer=tf.random_normal_initializer(stddev=0.01))
        phi = Conv2D(
            'embedding_phi',
            l,
            n_in / 2,
            1,
            strides=1,
            kernel_initializer=tf.random_normal_initializer(stddev=0.01))
        g = l
    else:
        theta, phi, g = l, l, l
    if n_in > H * W or softmax:
        f = tf.einsum('niab,nicd->nabcd', theta, phi)
        if softmax:
            orig_shape = tf.shape(f)
            f = tf.reshape(f, [-1, H * W, H * W])
            f = f / tf.sqrt(tf.cast(theta.shape[1], theta.dtype))
            f = tf.nn.softmax(f)
            f = tf.reshape(f, orig_shape)
        f = tf.einsum('nabcd,nicd->niab', f, g)
    else:
        f = tf.einsum('nihw,njhw->nij', phi, g)
        f = tf.einsum('nij,nihw->njhw', f, theta)
    if not softmax:
        f = f / tf.cast(H * W, f.dtype)
    return tf.reshape(f, tf.shape(l))
示例#19
0
def fpn_model(features):
    """
    Args:
        features ([tf.Tensor]): ResNet features c2-c5

    Returns:
        [tf.Tensor]: FPN features p2-p6
    """
    assert len(features) == 4, features
    num_channel = config.FPN_NUM_CHANNEL

    def upsample2x(name, x):
        return FixedUnPooling(
            name, x, 2, unpool_mat=np.ones((2, 2), dtype='float32'),
            data_format='channels_first')

        # tf.image.resize is, again, not aligned.
        # with tf.name_scope(name):
        #     logger.info("Nearest neighbor")
        #     shape2d = tf.shape(x)[2:]
        #     x = tf.transpose(x, [0, 2, 3, 1])
        #     x = tf.image.resize_nearest_neighbor(x, shape2d * 2, align_corners=True)
        #     x = tf.transpose(x, [0, 3, 1, 2])
        #     return x

    with argscope(Conv2D, data_format='channels_first',
                  nl=tf.identity, use_bias=True,
                  kernel_initializer=tf.variance_scaling_initializer(scale=1.)):
        lat_2345 = [Conv2D('lateral_1x1_c{}'.format(i + 2), c, num_channel, 1)
                    for i, c in enumerate(features)]
        lat_sum_5432 = []
        for idx, lat in enumerate(lat_2345[::-1]):
            if idx == 0:
                lat_sum_5432.append(lat)
            else:
                lat = lat + upsample2x('upsample_lat{}'.format(6 - idx), lat_sum_5432[-1])
                lat_sum_5432.append(lat)
        p2345 = [Conv2D('posthoc_3x3_p{}'.format(i + 2), c, num_channel, 3)
                 for i, c in enumerate(lat_sum_5432[::-1])]
        p6 = MaxPooling('maxpool_p6', p2345[-1], pool_size=1, strides=2, data_format='channels_first')
        return p2345 + [p6]
def fpn_model(features):
    """
    Args:
        features ([tf.Tensor]): ResNet features c2-c5
    Returns:
        [tf.Tensor]: FPN features p2-p6
    """
    assert len(features) == 4, features
    num_channel = 256

    use_gn = config.NORM == 'GN'

    def upsample2x(name, x):
        return FixedUnPooling(
            name, x, 2, unpool_mat=np.ones((2, 2), dtype='float32'),
            data_format='channels_first')

    with argscope(Conv2D, data_format='channels_first',
                  activation=tf.identity, use_bias=True,
                  kernel_initializer=tf.variance_scaling_initializer(scale=1.)):
        lat_2345 = [Conv2D('lateral_1x1_c{}'.format(i + 2), c, num_channel, 1)
                    for i, c in enumerate(features)]
        if use_gn:
            lat_2345 = [GroupNorm('gn_c{}'.format(i + 2), c) for i, c in enumerate(lat_2345)]

        lat_sum_5432 = []
        for idx, lat in enumerate(lat_2345[::-1]):
            if idx == 0:
                lat_sum_5432.append(lat)
            else:
                lat = lat + tf.transpose(tf.image.resize_nearest_neighbor(tf.transpose(lat_sum_5432[-1], [0, 2, 3, 1]), size=tf.shape(lat)[-2:]), [0, 3, 1, 2])
                
                #lat = lat + upsample2x('upsample_lat{}'.format(6 - idx), lat_sum_5432[-1])
                lat_sum_5432.append(lat)
        p2345 = [Conv2D('posthoc_3x3_p{}'.format(i + 2), c, num_channel, 3)
                 for i, c in enumerate(lat_sum_5432[::-1])]
        p6 = tf.pad(p2345[-1], [[0, 0], [0, 0], maybe_reverse_pad(0, 1), maybe_reverse_pad(0, 1)])
        p6 = MaxPooling('maxpool_p6', p6, pool_size=3, strides=2, data_format='channels_first', padding='VALID')
        #p1 = tf.transpose(tf.image.resize_nearest_neighbor(tf.transpose(p2345[0], [0, 2, 3, 1]), size=tf.shape(p2345[0])[-2:]*2), [0, 3, 1, 2])
        all_p = p2345 + [p6]
        return all_p[::-1]
示例#21
0
def LinearBottleneck(x, ich, och, kernel,
                     padding='SAME',
                     stride=1,
                     active=None,
                     t=3,
                     use_ab=False,
                     w_init=None):
    '''
    mobilenetv2 linear bottlenet.
    '''
    if active is None:
        active = True if kernel > 3 else False

    out = Conv2D('conv_e', x, int(ich*t), 1, activation=BNReLU)
    if use_ab:
        out = AccuracyBoost('ab', out)
    out = DWConv('conv_d', out, kernel, padding, stride, w_init, active)
    out = Conv2D('conv_p', out, och, 1, activation=None)
    with tf.variable_scope('conv_p'):
        out = BatchNorm('bn', out)
    return out
示例#22
0
def rpn_head(featuremap, channel, num_anchors):
    """
    Returns:
        label_logits: fHxfWxNA
        box_logits: fHxfWxNAx4
    """
    with argscope(Conv2D, data_format='channels_first',
                  kernel_initializer=tf.random_normal_initializer(stddev=0.01)):
        hidden = Conv2D('conv0', featuremap, channel, 3, activation=tf.nn.relu)

        label_logits = Conv2D('class', hidden, num_anchors, 1)
        box_logits = Conv2D('box', hidden, 4 * num_anchors, 1)
        # 1, NA(*4), im/16, im/16 (NCHW)

        label_logits = tf.transpose(label_logits, [0, 2, 3, 1])  # 1xfHxfWxNA
        label_logits = tf.squeeze(label_logits, 0)  # fHxfWxNA

        shp = tf.shape(box_logits)  # 1x(NAx4)xfHxfW
        box_logits = tf.transpose(box_logits, [0, 2, 3, 1])  # 1xfHxfWx(NAx4)
        box_logits = tf.reshape(box_logits, tf.stack([shp[2], shp[3], num_anchors, 4]))  # fHxfWxNAx4
    return label_logits, box_logits
示例#23
0
def DownsampleBottleneck(x, ich, och, kernel,
                         padding='SAME',
                         stride=2,
                         activation=None,
                         t=3,
                         use_ab=False,
                         w_init=None):
    '''
    downsample linear bottlenet.
    '''
    if activation is None:
        activation = BNReLU if kernel > 3 else BNOnly

    out_e = Conv2D('conv_e', x, ich*t, 1, activation=BNReLU)
    if use_ab:
        out_e = AccuracyBoost('ab', out_e)
    out_d = DWConv('conv_d', out_e, kernel, padding, stride, w_init, activation)
    out_m = DWConv('conv_m', out_e, kernel, padding, stride, w_init, activation)
    out = tf.concat([out_d, out_m], axis=-1)
    out = Conv2D('conv_p', out, och, 1, activation=BNOnly)
    return out
示例#24
0
 def resnet_shortcut(l, n_out, stride, nl=tf.identity):
     #data_format = get_arg_scope()['Conv2D']['data_format']
     n_in = l.get_shape().as_list()[3]
     if n_in != n_out:  # change dimension when channel is not the same
         return Conv2D('convshortcut',
                       l,
                       n_out,
                       1,
                       stride=stride,
                       nl=nl)
     else:
         return l
def resnet_bottleneck(l, ch_out, stride, group=1, res2_bottleneck=64):
    """
    Args:
        group (int): the number of groups for resnext
        res2_bottleneck (int): the number of channels in res2 bottleneck.
    The default corresponds to ResNeXt 1x64d, i.e. vanilla ResNet.
    """
    ch_factor = res2_bottleneck * group // 64
    shortcut = l
    l = Conv2D('conv1', l, ch_out * ch_factor, 1, strides=1, activation=BNReLU)
    l = Conv2D('conv2', l, ch_out * ch_factor, 3, strides=stride, activation=BNReLU, split=group)
    """
    ImageNet in 1 Hour, Sec 5.1:

    """
    l = Conv2D('conv3', l, ch_out * 4, 1, activation=get_bn(zero_init=True))
    """
 
    """
    ret = l + resnet_shortcut(shortcut, ch_out * 4, stride, activation=get_bn(zero_init=False))
    return tf.nn.relu(ret, name='block_output')
示例#26
0
def atrous_spatial_pyramid_pooling(logits):
    # Compute the ASPP.
    logits_size = tf.shape(logits)[1:3]
    with argscope(Conv2D, filters=256, kernel_size=3, activation=BNReLU):
        ASPP_1 = Conv2D('aspp_conv1', logits, kernel_size=1)
        ASPP_2 = Conv2D('aspp_conv2',
                        logits,
                        dilation_rate=cfg.atrous_rates[0])
        ASPP_3 = Conv2D('aspp_conv3',
                        logits,
                        dilation_rate=cfg.atrous_rates[1])
        ASPP_4 = Conv2D('aspp_conv4',
                        logits,
                        dilation_rate=cfg.atrous_rates[2])
        # ImagePooling = GlobalAvgPooling('image_pooling', logits)
        ImagePooling = tf.reduce_mean(logits, [1, 2],
                                      name='global_average_pooling',
                                      keepdims=True)
        image_level_features = Conv2D('image_level_conv',
                                      ImagePooling,
                                      kernel_size=1)
    image_level_features = tf.image.resize_bilinear(image_level_features,
                                                    logits_size,
                                                    name='upsample')
    output = tf.concat([ASPP_1, ASPP_2, ASPP_3, ASPP_4, image_level_features],
                       -1,
                       name='concat')
    output = Conv2D('conv_after_concat', output, 256, 1, activation=BNReLU)
    return output
示例#27
0
def resnet_bottleneck(layer, ch_out, stride):
    shortcut = layer
    if cfg.BACKBONE.STRIDE_1X1:
        if stride == 2:
            layer = layer[:, :, :-1, :-1]
        layer = Conv2D('conv1', layer, ch_out, 1, strides=stride)
        layer = Conv2D('conv2', layer, ch_out, 3, strides=1)
    else:
        layer = Conv2D('conv1', layer, ch_out, 1, strides=1)
        if stride == 2:
            layer = tf.pad(layer, [[0, 0], [0, 0],
                                   maybe_reverse_pad(0, 1),
                                   maybe_reverse_pad(0, 1)])
            layer = Conv2D('conv2',
                           layer,
                           ch_out,
                           3,
                           strides=2,
                           padding='VALID')
        else:
            layer = Conv2D('conv2', layer, ch_out, 3, strides=stride)
    layer = Conv2D('conv3',
                   layer,
                   ch_out * 4,
                   1,
                   activation=get_norm(zero_init=True))
    ret = layer + resnet_shortcut(
        shortcut, ch_out * 4, stride, activation=get_norm(zero_init=False))
    return tf.nn.relu(ret, name='output')
示例#28
0
def resnet_shortcut(l, n_out, stride, activation=tf.identity):
    data_format = get_arg_scope()['Conv2D']['data_format']
    n_in = l.get_shape().as_list()[1 if data_format in
                                   ['NCHW', 'channels_first'] else 3]
    if n_in != n_out:  # change dimension when channel is not the same
        return Conv2D('convshortcut',
                      l,
                      n_out,
                      1,
                      strides=stride,
                      activation=activation)
    else:
        return l
示例#29
0
def LinearBottleneck(x,
                     ich,
                     och,
                     kernel,
                     padding='SAME',
                     stride=1,
                     activation=None,
                     t=3,
                     use_ab=False,
                     w_init=None):
    '''
    mobilenetv2 linear bottlenet.
    '''
    if activation is None:
        activation = BNReLU if kernel > 3 else BNOnly

    out = Conv2D('conv_e', x, int(ich * t), 1, activation=BNReLU)
    out = DWConv('conv_d', out, kernel, padding, stride, w_init, activation)
    if use_ab and activation == BNReLU:
        out = AccuracyBoost('ab', out)
    out = Conv2D('conv_p', out, och, 1, activation=BNOnly)
    return out
示例#30
0
def se_resnet_bottleneck(l, ch_out, stride):
    shortcut = l
    l = Conv2D('conv1', l, ch_out, 1, activation=BNReLU)
    l = Conv2D('conv2', l, ch_out, 3, strides=stride, activation=BNReLU)
    l = Conv2D('conv3', l, ch_out * 4, 1, activation=get_bn(zero_init=True))

    squeeze = GlobalAvgPooling('gap', l)
    squeeze = FullyConnected('fc1',
                             squeeze,
                             ch_out // 4,
                             activation=tf.nn.relu)
    squeeze = FullyConnected('fc2',
                             squeeze,
                             ch_out * 4,
                             activation=tf.nn.sigmoid)
    data_format = get_arg_scope()['Conv2D']['data_format']
    ch_ax = 1 if data_format in ['NCHW', 'channels_first'] else 3
    shape = [-1, 1, 1, 1]
    shape[ch_ax] = ch_out * 4
    l = l * tf.reshape(squeeze, shape)
    return l + resnet_shortcut(
        shortcut, ch_out * 4, stride, activation=get_bn(zero_init=False))