def test_min_max_indicator_inplace_false(self, data_frame): """ Test that not setting inplace rules equates to more columns after the transformation""" test_feature = MinMaxNormalizer( columns=TestMinMaxNormalizer.price_columns, inplace=False) test_feature.reset() transformed = test_feature.transform(data_frame) assert transformed is not None assert len(data_frame.columns) != len(transformed.columns)
def test_min_max_indicator(self, data_frame, reference_frame): """ Check that the min-max indicator is to be expected. """ test_feature = MinMaxNormalizer( columns=TestMinMaxNormalizer.price_columns) test_feature.reset() roundable = 4 transformed = test_feature.transform(data_frame) assert transformed is not None transformed = transformed.round(roundable) reference_frame = reference_frame.round(roundable) close_1 = transformed.Close.values close_2 = reference_frame.Close.values is_valid = (close_1 == close_2).all() assert is_valid