示例#1
0
        xs, ts = batch[:-1], batch[-1]
        evaluator.on_batch_begin({'train': False, 'xs': xs, 'ts': ts})
        model(*xs)
        evaluator.on_batch_end({'train': False, 'xs': xs, 'ts': ts})
    evaluator.on_epoch_validate_end({'epoch': 0})


if __name__ == "__main__":
    Log.AppLogger.configure(mkdir=True)

    App.add_command(
        'decode', decode, {
            'gpu':
            arg('--gpu',
                '-g',
                type=int,
                default=-1,
                help='GPU ID (negative value indicates CPU)'),
            'model_file':
            arg('--modelfile',
                type=str,
                required=True,
                help='Trained model archive file'),
            'save_to':
            arg('--out',
                type=str,
                default=None,
                help='Save results to the specified directory'),
            'target_file':
            arg('--targetfile',
                type=str,
示例#2
0
文件: mnist.py 项目: greyblue9/teras
        },
        converter=lambda x: chainer.dataset.convert.to_device(device, x))
    trainer.add_listener(
        training.listeners.ProgressBar(lambda n: tqdm(total=n)), priority=200)
    trainer.fit((train_x, train_y), (test_x, test_y), n_epoch, batch_size)


if __name__ == "__main__":
    App.configure(name='chainer-mnist', logoption='d')
    App.add_command(
        'train',
        train, {
            'batch_size':
            arg('--batchsize',
                '-b',
                type=int,
                default=100,
                help='Number of images in each mini-batch'),
            'device':
            arg('--device',
                type=int,
                default=-1,
                metavar='ID',
                help='Device ID (negative value indicates CPU)'),
            'n_epoch':
            arg('--epoch',
                '-e',
                type=int,
                default=20,
                help='Number of sweeps over the dataset to train'),
            'n_units':
示例#3
0
    # App.configure(logdir=App.basedir + '/../logs')
    if '--savedir' in sys.argv:
        savedir_index = sys.argv.index('--savedir') + 1
        savedir = sys.argv[savedir_index]
    if '--modelfile' in sys.argv:
        savedir_index = sys.argv.index('--modelfile') + 1
        savedir = os.path.dirname(sys.argv[savedir_index])
    App.configure(logdir=App.basedir + '/' + savedir)
    logging.AppLogger.configure(mkdir=True)

    App.add_command(
        'train', train, {
            'batch_size':
            arg('--batchsize',
                type=int,
                default=20,
                metavar='NUM',
                help='Number of examples in each mini-batch'),
            'cache_dir':
            arg('--cachedir',
                type=str,
                default=(App.basedir + '/../cache'),
                metavar='DIR',
                help='Cache directory'),
            'test_file':
            arg('--devfile',
                type=str,
                default=None,
                metavar='FILE',
                help='Development data file'),
            'device':
示例#4
0
                    ]))
                print()
            UAS, LAS, count = UAS + _uas, LAS + _las, count + _count
    Log.i("[evaluation] UAS: {:.8f}, LAS: {:.8f}".format(
        UAS / count * 100, LAS / count * 100))


if __name__ == "__main__":
    Log.AppLogger.configure(mkdir=True)

    App.add_command(
        'train', train, {
            'backend':
            arg('--backend',
                type=str,
                choices=('chainer', 'pytorch'),
                default='chainer',
                help='Backend framework for computation'),
            'batch_size':
            arg('--batchsize',
                '-b',
                type=int,
                default=32,
                help='Number of examples in each mini-batch'),
            'embed_file':
            arg('--embedfile',
                type=str,
                default=None,
                help='Pretrained word embedding file'),
            'embed_size':
            arg('--embedsize',
示例#5
0
    trainer = training.Trainer(optimizer,
                               model,
                               loss_func=compute_loss,
                               accuracy_func=compute_accuracy)
    trainer.configure(framework_utils.config)

    trainer.fit(train_dataset,
                None,
                batch_size=batch_size,
                epochs=n_epoch,
                validation_data=test_dataset,
                verbose=App.verbose)


if __name__ == "__main__":
    logging.AppLogger.configure(mkdir=True)
    App.add_command(
        'train', train, {
            'train_file': arg('--trainfile', type=str, required=True),
            'test_file': arg('--testfile', type=str),
            'word_embed_file': arg('--embedfile', type=str),
            'n_epoch': arg('--epoch', type=int, default=20),
            'batch_size': arg('--batchsize', type=int, default=10),
            'lr': arg('--lr', type=float, default=0.01),
            'gpu': arg('--gpu', type=int, default=-1),
            'seed': arg('--seed', type=int, default=1),
        })
    chainer.config.debug = False
    chainer.config.type_check = False
    App.run()
示例#6
0
        arc_mlp_units=kwargs.get('arc_mlp_units', 500),
        rel_mlp_units=kwargs.get('rel_mlp_units', 100),
        arc_mlp_dropout=kwargs.get('arc_mlp_dropout', dropout_ratio),
        rel_mlp_dropout=kwargs.get('rel_mlp_dropout', dropout_ratio))
    return parser


if __name__ == "__main__":
    App.configure(logdir=App.basedir + '/../logs', loglevel='debug')
    logging.AppLogger.configure(mkdir=True)
    App.add_command(
        'train', train, {
            'batch_size':
            arg('--batchsize',
                type=int,
                default=5000,
                metavar='NUM',
                help='Number of tokens in each mini-batch'),
            'cache_dir':
            arg('--cachedir',
                type=str,
                default=(App.basedir + '/../cache'),
                metavar='DIR',
                help='Cache directory'),
            'test_file':
            arg('--devfile',
                type=str,
                default=None,
                metavar='FILE',
                help='Development data file'),
            'device':
示例#7
0
                             loader=loader)))

    # Start training
    trainer.fit(train_dataset, None,
                batch_size=batch_size,
                epochs=n_epoch,
                validation_data=test_dataset,
                verbose=App.verbose)


if __name__ == "__main__":
    Log.AppLogger.configure(mkdir=True)

    App.add_command('train', train, {
        'batch_size':
        arg('--batchsize', '-b', type=int, default=32,
            help='Number of examples in each mini-batch'),
        'embed_file':
        arg('--embedfile', type=str, default=None,
            help='Pretrained word embedding file'),
        'embed_size':
        arg('--embedsize', type=int, default=100,
            help='Size of embeddings'),
        'gpu':
        arg('--gpu', '-g', type=int, default=-1,
            help='GPU ID (negative value indicates CPU)'),
        'grad_clip':
        arg('--gradclip', type=float, default=5.0,
            help='L2 norm threshold of gradient norm'),
        'l2_lambda':
        arg('--l2', type=float, default=0.0,
            help='Strength of L2 regularization'),