示例#1
0
 def insult():
     adjective1 = choice(phrase1)
     adjective2 = choice(phrase2)
     noun1 = choice(phrase3)
     cp("thou art a " + adjective1 + adjective2 + noun1 + "!",
        "cyan",
        attrs=["bold"])
     return "you have been insulted!"
示例#2
0
    def usernamename():
        wantname = input("view username [y/n]: ")

        if wantname.lower() == "y":
            cp("Your username: "******"cyan", attrs=["bold"])
        elif wantname.lower() == "yes":
            cp("Your username: "******"cyan", attrs=["bold"])
        elif wantname.lower() == "n":
            return "USERNAME VIEWER CANCELED!"
        elif wantname.lower() == "no":
            return "USERNAME VIEWER CANCELED!"
        return "Command Complete"
示例#3
0
    def sessionname():
        wantname = input("view session name [y/n]: ")

        if wantname.lower() == "y":
            cp("Your session name: " + session, "cyan", attrs=["bold"])
        elif wantname.lower() == "yes":
            cp("Your session name: " + session, "cyan", attrs=["bold"])
        elif wantname.lower() == "n":
            return "SESSION VIEWER CANCELED!"
        elif wantname.lower() == "no":
            return "SESSION VIEWER CANCELED!"
        return "Command Complete"
示例#4
0
def _min_max_scaling(train, test):
    """
    using MinMax function for scaling array in range(-1,1)
    saving scaler in order to reuse it for precdictions
    param:: train:numpy.array, test:numpy.array
    return:: train_scaled:numpy.array, test_scaled:numpy.array
    s"""
    scaler = MinMaxScaler(feature_range=(-1, 1))
    scaler = scaler.fit(train)

    # reshaping the array so they fit in the scaler
    train = train.reshape(train.shape[0], train.shape[1])
    test = test.reshape(test.shape[0], test.shape[1])

    train_scaled = scaler.transform(train)
    print(f'Scaler: {test.shape}')
    test_scaled = scaler.transform(test)

    # svaing the scaler
    try:
        save_data_to_(file_name='min-max-scaler.save',
                      folder_name='saved_model_data',
                      data=scaler,
                      is_model=False)
    except Exception as save_error:
        print(
            cp(
                f'log[error]:Failed to save data for \'min-max-scaler.save\'. See log file',
                'red'))
        logging.error('Failed to save data for', exc_info=True)

    return train_scaled, test_scaled
示例#5
0
 def add_color():
     cp("pybot: ", "magenta", end="")
     if color == attrs == "":
         print(bot_response)
     elif color == "":
         cp(bot_response, "white", attrs=[attrs])
     elif attrs == "":
         cp(bot_response, color)
     else:
         cp(bot_response, color, attrs=[attrs])
示例#6
0
def _get_key_value_config(key, config):
    """
    function returning the value of passed key
    param:: key:string
    return:: value:string
        """
    try:
        return config['lstm-script'][key]
    except KeyError as key_error:
        print(
            cp(f'log[error]:Key not in config dictornay. See log file', 'red'))
        logging.error('Key not in config dictorna', exc_info=True)
示例#7
0
def _load_config_json():
    """
    loading the config file in order to get target, feature, date, and groupby value
    assigns the constant CONFIG the json as dict{}
    """
    try:
        with open(CONFIG_PATH, 'r') as conf:
            config = json.load(conf)
            return config
    except Exception as json_error:
        print(
            cp(
                f'log[error]:unable to load preprocessing.config.json file. See log file',
                'red'))
        logging.error('unable to load preprocessing.config.json file',
                      exc_info=True)
示例#8
0
 def stupid():
     while True:
         stupid_bot_response = choice(stupidanswer)
         if color == attrs == "":
             print(stupid_bot_response)
         elif color == "":
             cp(stupid_bot_response, "white", attrs=[attrs])
         elif attrs == "":
             cp(stupid_bot_response, color)
         else:
             cp(stupid_bot_response, color, attrs=[attrs])
         stupidprompt = input(cd(loginuser + ": ",
                                 "yellow"))  # so they get a prompt
         if stupidprompt.lower() == "!exitstupid":
             return "EXITING STUPID MODE!"
示例#9
0
 def fake():
     while True:
         fake_bot_response = choice(fakeanswer)
         if color == attrs == "":
             print(fake_bot_response)
         elif color == "":
             cp(fake_bot_response, "white", attrs=[attrs])
         elif attrs == "":
             cp(fake_bot_response, color)
         else:
             cp(fake_bot_response, color, attrs=[attrs])
         fakeprompt = input(cd(loginuser + ": ",
                               "yellow"))  # so they get a prompt
         if fakeprompt.lower() == "!exitfake":
             return "EXITING FAKE MODE!"
示例#10
0
def save_data_to_(file_name, folder_name, data, is_model):
    """
    function to save model and scaler.
    Needed to change the current directory 
    The is_model defindes which saver to use. for scaler and model two different needed
    param:: file_name:string, folder_name:string, data:obj, is_model:boolean
    return:: -
    raise: Execption
    """
    try:
        os.chdir('infrastructure/ml-models/'.join(folder_name))
        if is_model:
            data.save(file_name)
        else:
            joblib.dump(data, file_name)
    except Exception as saving_error:
        print(
            cp(f'log[error]:Failed to save data for {file_name}. See log file',
               'red'))
        logging.error('Failed to save data for', exc_info=True)
    finally:
        os.path.dirname(os.path.abspath(__file__))
示例#11
0
def prize():
    global prize_given

    if prize_given:

        cp("YOU ALREADY UNBOXED A PRIZE!", "magenta")

    else:

        prize_response = choice(prizeunbox)

        cp(prize_response, "cyan")

        cp("PRIZE UNBOXED!", "magenta")

        prize_given = True

    return "Command Complete"
示例#12
0
    "haya",
    "timchen",
    "lmntl dj",
    "jimmymcjimface",
    "jbrown",
]

staffpassword = [
    "7ebf013ae25747d5f9646b5380adf0d1add777f912ebd88f64cd2ca95faeddb81c33107a7e1231a754f40bdc0289135d11cbb17573d2f2724afb1692ac15adb5"
]

semistaffpassword = [
    "0913de549bbebb374c0a55eb695a0e6cc556c7db15b2d5c759c7abb06320e6eb3addd75052b9a0d65a43ccf6658e69e28dd60964c36f5e42caa7508744e7b858"
]

cp(ff("""PyBot\n   v0.9.4""", font="starwars"), "yellow", attrs=["bold"])

print("\n" * 10)

nickname = input("What Should I Call You: ")

clear()

cp(ff("PyBot\n   v0.9.4", font="starwars"), "yellow", attrs=["bold"])

print("\n" * 10)

lang = input("what's your spoken language: ")

if lang.lower() == "":
    lang = "english"
示例#13
0
def start_processor():
    """
    this is the main function with orchastrats the programm
    first the data (csv) will be load - as well as the config file. The data frame will be reduced to the data needed.
    next the differences of sales and prev-sales are computed followed by the creation of lags needed for the LSTM model
    as last step the LSTM model will be saved (both architecture and weights) in a .h5 file for later usage.
    In addition the fitted MinMaxScaler will be saved so it can be imported with the model.h5 for making proper predictions
    param:: -
    return:: -
    """
    __init_logging()

    # fetch config file, extract values
    config = _load_config_json()
    df_path = _get_key_value_config('dataFrame-path', config)
    print(df_path)
    date_col = _get_key_value_config('date-col', config)
    target_col = _get_key_value_config('target-col', config)

    #loading data frame
    data = pd.read_csv(df_path, encoding='ISO-8859-1', sep=",")
    data = data.rename(columns={date_col: 'date', target_col: 'sales'})
    date_col = 'date'
    target_col = 'sales'
    # data frame with Sales and Date only
    print(data.head())
    df_lstm = data.loc[:, (date_col, target_col)].copy()

    # convert date field to pandas.Datetime obj and group by month
    df_lstm[date_col] = pd.to_datetime(df_lstm[date_col])
    df_lstm[date_col] = df_lstm[date_col].dt.year.astype(
        'str') + '-' + df_lstm[date_col].dt.month.astype('str') + '-01'
    df_lstm[date_col] = pd.to_datetime(df_lstm[date_col])

    df_lstm = df_lstm.groupby(date_col).sales.sum().reset_index()
    #############################################################

    # comupting the difference between sales and prev sales. Adding the lags to the data frame
    df_diff = df_lstm.copy()
    df_diff['prev_sales'] = df_diff['sales'].shift(1)
    df_diff = df_diff.dropna()

    df_diff['difference'] = _compute_diff_of_sales(df_diff['sales'],
                                                   df_diff['prev_sales'])

    df_supervised = df_diff.drop(['prev_sales'], axis=1).copy()
    df_supervised = _create_lags_for_supervised(df_supervised, 12)

    df_features = df_supervised.drop(['sales', 'date'], axis=1)
    #############################################################

    # split data frame in train test sets and scale both arrays
    train_set, test_set = df_features[0:-6].values, df_features[-6:].values
    train_scaled, test_scaled = _min_max_scaling(train_set, test_set)

    #############################################################

    # creating feature and target variables. Model creation / fiting and saving
    X_train, y_train = train_scaled[:, 1:], train_scaled[:, 0:1]
    X_train = X_train.reshape(X_train.shape[0], 1, X_train.shape[1])

    X_test, y_test = test_scaled[:, 1:], test_scaled[:, 0:1]

    X_test = X_test.reshape(X_test.shape[0], 1, X_test.shape[1])

    lstm_model = _create_LSTM_model(X_train, y_train)

    try:
        save_data_to_(file_name='lstm-model.h5',
                      folder_name='saved_model_data',
                      data=lstm_model,
                      is_model=True)
    except Exception as save_error:
        print(
            cp(
                f'log[error]:Failed to save data for \'lstm-model.h5\'. See log file',
                'red'))
        logging.error('Failed to save data for', exc_info=True)
示例#14
0
 def log(mode="None",out="",noLog=False,file=fnameSet):
     try:
         from termcolor import colored as col
         from termcolor import cprint as cp
         import colorama
     except ImportError:
         print("\nMissing dependancy\n")
         raise missingContent
     from datetime import datetime
     colorama.init()
     
     type=""
     if out == "":#User used the function incorrectly
         raise incorrectUsage#User did an oof
     if mode == "None":
         raise incorrectUsage
     elif mode == 'e':
         type = "ERROR"
         if out != "":  cp("{}".format(type),"white",'on_red',attrs=['bold'],end=""); print(": {}".format(out)) # this shows up in the interactive prompt
     elif mode == 'w':
         type = "Warning"
         if out != "":   cp("{}".format(type),"yellow",attrs=['bold'],end=""); print(": {}".format(out)) # this shows up in the interactive prompt
     elif mode == 'n':
         type = "Notice"
         if out != "":   print("{}: {}".format(type,out)) # this shows up in the interactive prompt
     elif mode == 'i':
         type = "Info"
         if out != "":   cp("{}".format(type),"blue",attrs=['bold'],end=""); print(": {}".format(out)) # this shows up in the interactive prompt
     elif mode == 's':
         type = "SUCCESS"
         if out != "":   print("{}: {}".format(col(type,"green",attrs=['bold']),out)) # this shows up in the interactive prompt
     elif mode == 'z':
         type = "SPAM"
         if noLog == True:   raise incorrectUsage
     if noLog == False:
         try:
             f = open(file, 'a') #prints now go the the file
             f.write("\n{} - {}: {}".format(str(datetime.now().strftime('%Y-%m-%d %H:%M:%S')),type,out))   # nothing appears. it's written to log file instead
             f.close
         except FileNotFoundError:
             cp("consoleTools ERROR ","white",'on_red',attrs=['bold'],end=""); cp("Issue writing to log file - does not exist. Are you running from an IDE? (doesn't always work in an IDE)","red",'on_white',attrs=['bold'],end="\n")
             cp("Try specifying a log file when using the log tool if you are not running the script from the same directory as it is located.","red",'on_white',attrs=['bold'],end="\n")
         except FileExistsError:
             cp("consoleTools ERROR ","white",'on_red',attrs=['bold','blink'],end=""); cp("Issue writing to log file - file exists. Is the file open in the background/by another process (won't be able to write if so)","red",'on_white',attrs=['bold'],end="\n")