示例#1
0
def extract_image_data(data, languages=None):
    """Extract text from a binary string of data."""
    if TESSDATA_PREFIX is None:
        raise ValueError("Env TESSDATA_PREFIX is not set, OCR will not work.")
    key, text = get_cache(data)
    if text is not None:
        return text
    try:
        img = Image.open(StringIO(data))
    except Exception as ex:
        log.debug("Failed to parse image internally: %r", ex)
        return ""

    # TODO: play with contrast and sharpening the images.
    try:
        languages = _get_languages(languages)
        extractor = Tesseract(TESSDATA_PREFIX, lang=languages)
        extractor.set_page_seg_mode(PageSegMode.PSM_AUTO_OSD)
        text = extractor.ocr_image(img)
        log.debug("OCR done: %s, %s characters extracted", languages, len(text))
        set_cache(key, text)
        return text
    except Exception as ex:
        log.exception(ex)
        return ""
示例#2
0
def extract_image_data(data, languages=None):
    """Extract text from a binary string of data."""
    if TESSDATA_PREFIX is None:
        raise ValueError('Env TESSDATA_PREFIX is not set, OCR will not work.')
    key, text = get_cache(data)
    if text is not None:
        return text
    try:
        img = Image.open(StringIO(data))
    except Exception as ex:
        log.debug('Failed to parse image internally: %r', ex)
        return ''

    # TODO: play with contrast and sharpening the images.
    try:
        languages = _get_languages(languages)
        extractor = Tesseract(TESSDATA_PREFIX, lang=languages)
        extractor.set_page_seg_mode(PageSegMode.PSM_AUTO_OSD)
        text = extractor.ocr_image(img)
        log.debug('OCR done: %s, %s characters extracted', languages,
                  len(text))
        set_cache(key, text)
        return text
    except Exception as ex:
        log.exception(ex)
        return ''
示例#3
0
def parse_img():
    im = Image.open("./temp.jpg") # the second one
    im = im.filter(ImageFilter.MedianFilter())
    enhancer = ImageEnhance.Contrast(im)
    im = enhancer.enhance(2)
    im = im.convert('1')
    im.save('./temp2.jpg')
    tr = Tesseract(os.environ["TESSDATA_PREFIX"],"eng")
    text = tr.ocr_image(Image.open('./temp2.jpg'))
    return redirect('http://mailsnail.tech/api/notify')
示例#4
0
	def __init__(self):		
		cwd = os.path.dirname(os.path.realpath(__file__))
		os.environ['TESSDATA_PREFIX'] = cwd
		self.tr = Tesseract(lang='deu')
		self.gs = goslate.Goslate()
		self.trained_paper = False
		self.paper_row_nw = None
		self.paper_row_se = None
		self.paper_col_nw = None
		self.paper_col_se = None
		self.paper_hist = None
		self.paper = None
		self.words = None
		self.translations = []
		self.pointed_locations = deque(maxlen=20)
示例#5
0
def tesseract():
    global semaphore

    while(True):
        if not os.path.exists("./output.png"):
            break

        semaphore.acquire()
        img = Image.open("output.png")
        tr = Tesseract("/usr/local/share")
        text = tr.ocr_image(img)
        print text
        '''
        subprocess.call(["tesseract", "output.png","out"])
        '''
        semaphore.release()
示例#6
0
文件: tesseract.py 项目: tomjie/aleph
def extract_image_data(data, languages=None):
    """Extract text from a binary string of data."""
    tessdata_prefix = get_config('TESSDATA_PREFIX')
    if tessdata_prefix is None:
        raise IngestorException("TESSDATA_PREFIX is not set, OCR won't work.")
    languages = get_languages_iso3(languages)
    text = Cache.get_ocr(data, languages)
    if text is not None:
        return text
    img = Image.open(StringIO(data))
    # TODO: play with contrast and sharpening the images.
    extractor = Tesseract(tessdata_prefix, lang=languages)
    extractor.set_page_seg_mode(PageSegMode.PSM_AUTO_OSD)
    text = extractor.ocr_image(img)
    log.debug('OCR done: %s, %s characters extracted', languages, len(text))
    Cache.set_ocr(data, languages, text)
    return text
示例#7
0
def extract_image_data(data, languages=None):
    """Extract text from a binary string of data."""
    tessdata_prefix = get_config('TESSDATA_PREFIX')
    if tessdata_prefix is None:
        raise IngestorException("TESSDATA_PREFIX is not set, OCR won't work.")
    languages = get_languages_iso3(languages)
    text = Cache.get_ocr(data, languages)
    if text is not None:
        return text
    try:
        img = Image.open(StringIO(data))
    except DecompressionBombWarning as dce:
        log.debug("Image too large: %", dce)
        return None
    except IOError as ioe:
        log.info("Unknown image format: %r", ioe)
        return None
    # TODO: play with contrast and sharpening the images.
    extractor = Tesseract(tessdata_prefix, lang=languages)
    extractor.set_image(img)
    extractor.set_page_seg_mode(PageSegMode.PSM_AUTO_OSD)
    text = extractor.get_text() or ''
    text = text.decode(encoding="UTF-8")
    # extractor.clear()
    log.debug('OCR done: %s, %s characters extracted', languages, len(text))
    Cache.set_ocr(data, languages, text)
    return text
示例#8
0
def extract_image_data(data, languages=None):
    """Extract text from a binary string of data."""
    tessdata_prefix = get_config('TESSDATA_PREFIX')
    if tessdata_prefix is None:
        raise IngestorException("TESSDATA_PREFIX is not set, OCR won't work.")
    languages = get_languages_iso3(languages)
    text = Cache.get_ocr(data, languages)
    if text is not None:
        return text
    img = Image.open(StringIO(data))
    # TODO: play with contrast and sharpening the images.
    extractor = Tesseract(tessdata_prefix, lang=languages)
    extractor.set_page_seg_mode(PageSegMode.PSM_AUTO_OSD)
    text = extractor.ocr_image(img)
    log.debug('OCR done: %s, %s characters extracted',
              languages, len(text))
    Cache.set_ocr(data, languages, text)
    return text
示例#9
0
def ocrImage(tagDest,tessdataPrefix,lang,charWhitelist,pageMode):
  destOcrImg = "/tmp/"+genymotion_vm_name+"-"+tagDest+".png"
  print "OCR : "+str(destOcrImg)
  #OCR Def
  tr = Tesseract(tessdataPrefix, lang)
  tr.set_variable("tessedit_char_whitelist", charWhitelist)
  tr.set_page_seg_mode(pageMode)
  #OCR
  image = Image.open(destOcrImg)
  tr.set_image(image)
  return tr.get_utf8_text()
示例#10
0
    def pages(self):
        for page in range(self.file.numPages):
            img = WandImage(filename=self.path + ('[%s]' % page),
                resolution=self.config['wand_resolution'])
            img.compression_quality = self.config['wand_compression_quality']
            temp = NamedTemporaryFile(suffix='.jpg')
            # Passing temp as file kwargs does not work for some reason.
            # So we just pass the filename.
            img.save(filename=temp.name)

            # Reopen the image file as PIL object
            img = Image.open(temp.name)

            # Run tesseract
            tr = Tesseract()
            result = tr.ocr_image(img)

            temp.close()

            yield result
示例#11
0
def extract_image_data(data, languages=None):
    """Extract text from a binary string of data."""
    tessdata_prefix = get_config('TESSDATA_PREFIX')
    if tessdata_prefix is None:
        raise IngestorException("TESSDATA_PREFIX is not set, OCR won't work.")
    languages = get_languages_iso3(languages)
    text = Cache.get_ocr(data, languages)
    if text is not None:
        return text
    try:
        img = Image.open(StringIO(data))
    except DecompressionBombWarning as dce:
        log.debug("Image too large: %", dce)
        return None
    except IOError as ioe:
        log.info("Unknown image format: %r", ioe)
        return None
    # TODO: play with contrast and sharpening the images.
    extractor = Tesseract(tessdata_prefix, lang=languages)
    extractor.set_page_seg_mode(PageSegMode.PSM_AUTO_OSD)
    text = extractor.ocr_image(img)
    extractor.clear()
    log.debug('OCR done: %s, %s characters extracted',
              languages, len(text))
    Cache.set_ocr(data, languages, text)
    return text
def ocr_text(img):
    '''Perform OCR on the image.'''
    tr = Tesseract(lang='eng')
    tr.clear()
    pil_image = pil.Image.fromarray(img)
    tr.set_image(pil_image)
    utf8_text = tr.get_text()
    return utf8_text
示例#13
0
def index(request):
    #from tesserwrap import Tesseract
    #from PIL import Image
    img = Image.open("/home/df/projects/django/nuspyp/tesseracttest/test.png")
    tr = Tesseract()
    tr.ocr_image(img)

    img2 = dog(
        filename='/home/df/projects/django/nuspyp/tesseracttest/source.pdf')
    single_image = img2.sequence[0]
    tr.ocr_image(single_image)

    return HttpResponse(tr.get_text())
示例#14
0
 def __init__(self):
     cwd = os.path.dirname(os.path.realpath(__file__))
     os.environ["TESSDATA_PREFIX"] = cwd
     self.tr = Tesseract(lang="deu")
     self.gs = goslate.Goslate()
     self.trained_paper = False
     self.paper_row_nw = None
     self.paper_row_se = None
     self.paper_col_nw = None
     self.paper_col_se = None
     self.paper_hist = None
     self.paper = None
     self.words = None
     self.translations = []
     self.pointed_locations = deque(maxlen=20)
示例#15
0
def ocr(img,idioma):
    ocr_img = Image.fromarray(img)
    ocr = Tesseract(lang=idioma)
    ocr.set_image(ocr_img)
    pattern = re.compile('[a-zA-Z0-9]')
    text = ocr.get_utf8_text()
    text = text.splitlines()
    text = [x for x in text if x != '']
    text = [x for x in text if pattern.search(x)]
    ocr.clear()
    return (text)
示例#16
0
def ocr(info):
    cv2.imwrite('../fig/info.jpg', info)
    img = Image.open('../fig/info.jpg')
    tr = Tesseract(datadir='../data', lang='eng')
    text = tr.ocr_image(img)
    print(text)
示例#17
0
from tesserwrap import Tesseract
from PIL import Image
tr = Tesseract("/usr/local/share") # this is slow
im = Image.open("test2.png")
text = tr.ocr_image(im)
print text
words = text.split()
for thing in words:
	if thing == "Arlington":
		print "found ittt" 
import cv2
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
import math
from tesserwrap import Tesseract
from PIL import Image

tr = Tesseract("/usr/local/share")


def auto_canny(image, sigma=0.33):
    v = np.median(image)
    lower = int(max(0, (1.0 - sigma) * v))
    upper = int(min(255, (1.0 + sigma) * v))
    edged = cv2.Canny(image, lower, upper)
    return edged


img = cv2.imread("image.png")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (3, 3), 0)
threshold = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_MEAN_C,
                                  cv2.THRESH_BINARY, 11, 2)
wide = cv2.Canny(threshold, 10, 200)
tight = cv2.Canny(threshold, 225, 250)
auto = auto_canny(threshold)
#cv2.imshow('my_image', img)
#cv2.imshow("Edges", np.hstack([wide, tight, auto]))
#cv2.imshow("Wide",wide)
#cv2.imshow("Tight",tight)
def ocr_text(img):
    tr = Tesseract(lang='eng')
    tr.clear()
    pil_image = pil.Image.fromarray(img)
    # Turn off OCR word dictionaries
    tr.set_variable('load_system_dawg', "F")
    tr.set_variable('load_freq_dawg', "F")
    tr.set_variable('-psm', "7") # treat image as single line
    tr.set_variable('tessedit_char_whitelist', "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789")
    tr.set_image(pil_image)
    utf8_text = tr.get_text()
    return unicode(utf8_text)
示例#20
0
    def handleFrameForTaskB(self, frame, regionCoordinates):

        try:
            coordinates = list()
            for point in regionCoordinates:
                coordinates.append(
                    [point[0] * frame.shape[1], point[1] * frame.shape[0]])
            coordinates = np.int0(coordinates)
            frame = cv2.drawContours(frame, [coordinates], 0, (0, 255, 0), 2)
            warped = four_point_transform(frame, coordinates)
            shrunk = cv2.cvtColor(warped[:, int(warped.shape[1] / 10):],
                                  cv2.COLOR_BGR2GRAY)
            scale = 6
            shrunk = cv2.resize(
                shrunk, (shrunk.shape[1] * scale, shrunk.shape[0] * scale),
                interpolation=cv2.INTER_CUBIC)
            _, shrunk = cv2.threshold(shrunk, 100, 255,
                                      cv2.THRESH_BINARY + cv2.THRESH_OTSU)
            shrunk = 255 - cv2.dilate(
                255 - shrunk, np.ones((1, 1)), iterations=1)

            num, features = cv2.connectedComponents(255 - shrunk)

            plate = str()
            corners = list()
            for i in range(0, num):
                area = np.sum((features == i))
                if area > scale**2 * 2 * 25 and area < scale * 4 * 500:
                    rows = np.any(features == i, axis=1)
                    cols = np.any(features == i, axis=0)
                    rmin, rmax = np.where(rows)[0][[0, -1]]
                    cmin, cmax = np.where(cols)[0][[0, -1]]
                    corners.append([rmin, cmin, rmax, cmax])
            corners = np.array(corners)

            idx = np.argsort(corners[:, 1])
            sorted_corners = corners[idx]

            for corner in sorted_corners:
                minx = corner[0] - 2
                miny = corner[1] - 2
                maxx = corner[2] + 2
                maxy = corner[3] + 2

                if minx < 0:
                    minx = 0
                if miny < 0:
                    miny = 0

                snip = features[minx:maxx, miny:maxy]

                if snip.shape[1] > snip.shape[0]:
                    continue

                snip = cv2.erode(snip.astype(np.uint8),
                                 np.ones((5, 5)),
                                 iterations=1)
                im = Image.fromarray(np.uint8(snip))
                tr = Tesseract(datadir="/usr/share/tessdata")

                letter = tr.ocr_image(im).rstrip()
                for l in letter:
                    if l.isalnum():
                        letter = l
                plate += letter.capitalize()

            alphs = "".join(itertools.takewhile(str.isalpha, plate))
            nums = plate[len(alphs):]

            if len(alphs) == 2:
                plate = alphs[0] + "-" + alphs[1] + "-" + nums
            elif len(alphs) == 5:
                plate = alphs[:3] + "-" + alphs[3:] + "-" + nums
            else:
                diffs = list()
                alphscorners = sorted_corners[:len(alphs)]
                for i in range(len(alphscorners)):
                    if sorted_corners[i][1] == alphscorners[-1][1]:
                        break
                    diffs.append(sorted_corners[i + 1][1] -
                                 sorted_corners[i][3])

                cuts = np.array(diffs) > np.mean(diffs)
                rev_cuts = cuts[::-1]
                for i in range(len(cuts[::-1])):
                    if (rev_cuts[i] == 1):
                        alphs = alphs[:len(cuts) - i] + "-" + alphs[len(cuts) -
                                                                    i:]
                plate = alphs + "-" + nums
            if len(plate) < 5:
                return None
            elif len(plate) > 11:
                return None
            elif plate.count("-") > 2:
                return None
            elif plate.count("-") < 2:
                return None
            else:
                return plate
        except Exception as exception:

            return None
示例#21
0
class PaperDetection:
	def __init__(self):		
		cwd = os.path.dirname(os.path.realpath(__file__))
		os.environ['TESSDATA_PREFIX'] = cwd
		self.tr = Tesseract(lang='deu')
		self.gs = goslate.Goslate()
		self.trained_paper = False
		self.paper_row_nw = None
		self.paper_row_se = None
		self.paper_col_nw = None
		self.paper_col_se = None
		self.paper_hist = None
		self.paper = None
		self.words = None
		self.translations = []
		self.pointed_locations = deque(maxlen=20)


	def draw_paper_rect(self, frame):
		rows,cols,_ = frame.shape
		
		self.paper_row_nw = rows/5
		self.paper_row_se = 4*rows/5
		self.paper_col_nw = 2*cols/5
		self.paper_col_se = 3*cols/5
		
		cv2.rectangle(frame,(self.paper_col_nw,self.paper_row_nw),(self.paper_col_se,self.paper_row_se),
									(0,255,0),1)
		black = np.zeros(frame.shape, dtype=frame.dtype)
		frame_final = np.vstack([frame, black])
		return frame_final


	def train_paper(self, frame):
		self.set_paper_hist(frame)
		self.trained_paper = True

	
	def get_paper(self, frame):
		paper_masked = image_analysis.apply_hist_mask(frame, self.paper_hist)
		contours = image_analysis.contours(paper_masked)
		max_contour = image_analysis.max_contour(contours)
		paper = image_analysis.contour_interior(frame, max_contour)
		return paper
	

	def set_paper(self, frame):
		self.paper = self.get_paper(frame)


	def paper_copy(self):
		paper = self.paper.copy()
		return paper		

	
	def set_ocr_text(self, frame):
		paper = self.get_paper(frame)
		thresh = image_analysis.gray_threshold(paper, 100)
		paper_img = Image.fromarray(thresh)
		self.tr.set_image(paper_img)
		self.tr.get_text()
		self.words = self.tr.get_words()
		for w in self.words:
			translation = self.translate(w.value)
			self.translations.append(translation)


	def set_paper_hist(self, frame):
		hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
		roi = hsv[self.paper_row_nw:self.paper_row_se, self.paper_col_nw:self.paper_col_se]
		self.paper_hist = cv2.calcHist([roi], [0, 1], None, [180, 256], [0, 180, 0, 256])																		
		cv2.normalize(self.paper_hist, self.paper_hist, 0, 255, cv2.NORM_MINMAX)

	
	def get_word_at_point(self, point):
		for i, w in enumerate(self.words):
			x_nw,y_nw,x_se,y_sw = w.box
			x,y = point
			if x > x_nw and x < x_se and y > y_nw and y < y_sw:
				return self.translations[i]


	def get_word_index(self, point):
		for i, w in enumerate(self.words):
			x_nw,y_nw,x_se,y_sw = w.box
			x,y = point
			if x > x_nw and x < x_se and y > y_nw and y < y_sw:
				return i	


	def translate(self, word):
		translated_word = self.gs.translate(word,'en',source_language='de')
		return translated_word


	def update_pointed_locations(self, point):	
		index = self.get_word_index(point)
		if index != None:
			self.pointed_locations.append(index)


	def get_most_common_word(self):		
		index = self.most_common_location()
		if index != None:
			word = self.translations[index].encode('ascii', errors='backslashreplace')
			return word

	
	def most_common_location(self):
		values = set(self.pointed_locations)
		index = None
		maxi = 0
		for i in values:
			num = self.pointed_locations.count(i)
			if num > maxi:
				index = i
		frequency = float(self.pointed_locations.count(index))/float(self.pointed_locations.maxlen)
		if frequency > 0.25:
			return index
		else:
			return None					
			
import cv2
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
import math
from tesserwrap import Tesseract
from PIL import Image

tr = Tesseract("/usr/local/share")

def auto_canny(image, sigma=0.33):	
	v = np.median(image)	
	lower = int(max(0, (1.0 - sigma) * v))
	upper = int(min(255, (1.0 + sigma) * v))
	edged = cv2.Canny(image, lower, upper)	
	return edged

img = cv2.imread("image.png")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (3, 3), 0)
threshold = cv2.adaptiveThreshold(blurred,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,11,2)
wide = cv2.Canny(threshold, 10, 200)
tight = cv2.Canny(threshold, 225, 250)
auto = auto_canny(threshold)
#cv2.imshow('my_image', img)
#cv2.imshow("Edges", np.hstack([wide, tight, auto]))
#cv2.imshow("Wide",wide)
#cv2.imshow("Tight",tight)
#cv2.imshow("Auto",auto)

bin, contours, hierarchy = cv2.findContours(threshold,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
示例#23
0
#much stuff got commented in the end, staying here for a while for educational reasons only
#need to add connection to video from robot
import numpy as np
import vision_definitions
from time import sleep
import cv2
#from pytesser import *
from tesserwrap import Tesseract
from PIL import Image
from naoqi import ALProxy

ocr = Tesseract()
ocr.set_variable("tessedit_char_whitelist", "ABCDEFGHIJKLMNOPQRSTUVWXYZ") #since we use upper cased text only
#ocr.set_variable("classify_enable_learning", "0")
#ocr.set_variable("classify_enable_adaptive_matcher", "0")

#cap = cv2.VideoCapture(0)

#connecting to the robot
IP = "192.168.0.238"
#speech module
tts = ALProxy("ALTextToSpeech", IP, 9559)
cameraid=0
camProxy = ALProxy("ALVideoDevice", IP, 9559)
resolution = vision_definitions.kVGA
colorSpace = vision_definitions.kBGRColorSpace
videoClient = camProxy.subscribe("python_client", resolution, colorSpace, 5)
camProxy.setParam(vision_definitions.kCameraSelectID, cameraid)
#9137743885

示例#24
0
def ocr(info):
    cv2.imwrite('../fig/info.jpg', info)
    img = Image.open('../fig/info.jpg')
    tr = Tesseract(datadir='../data', lang='eng')
    text = tr.ocr_image(img)
    print(text)
示例#25
0
class PaperDetection:
    def __init__(self):
        cwd = os.path.dirname(os.path.realpath(__file__))
        os.environ["TESSDATA_PREFIX"] = cwd
        self.tr = Tesseract(lang="deu")
        self.gs = goslate.Goslate()
        self.trained_paper = False
        self.paper_row_nw = None
        self.paper_row_se = None
        self.paper_col_nw = None
        self.paper_col_se = None
        self.paper_hist = None
        self.paper = None
        self.words = None
        self.translations = []
        self.pointed_locations = deque(maxlen=20)

    def draw_paper_rect(self, frame):
        rows, cols, _ = frame.shape

        self.paper_row_nw = rows / 5
        self.paper_row_se = 4 * rows / 5
        self.paper_col_nw = 2 * cols / 5
        self.paper_col_se = 3 * cols / 5

        cv2.rectangle(
            frame, (self.paper_col_nw, self.paper_row_nw), (self.paper_col_se, self.paper_row_se), (0, 255, 0), 1
        )
        black = np.zeros(frame.shape, dtype=frame.dtype)
        frame_final = np.vstack([frame, black])
        return frame_final

    def train_paper(self, frame):
        self.set_paper_hist(frame)
        self.trained_paper = True

    def get_paper(self, frame):
        paper_masked = image_analysis.apply_hist_mask(frame, self.paper_hist)
        contours = image_analysis.contours(paper_masked)
        max_contour = image_analysis.max_contour(contours)
        paper = image_analysis.contour_interior(frame, max_contour)
        return paper

    def set_paper(self, frame):
        self.paper = self.get_paper(frame)

    def paper_copy(self):
        paper = self.paper.copy()
        return paper

    def set_ocr_text(self, frame):
        paper = self.get_paper(frame)
        thresh = image_analysis.gray_threshold(paper, 100)
        paper_img = Image.fromarray(thresh)
        self.tr.set_image(paper_img)
        self.tr.get_text()
        self.words = self.tr.get_words()
        for w in self.words:
            translation = self.translate(w.value)
            self.translations.append(translation)

    def set_paper_hist(self, frame):
        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
        roi = hsv[self.paper_row_nw : self.paper_row_se, self.paper_col_nw : self.paper_col_se]
        self.paper_hist = cv2.calcHist([roi], [0, 1], None, [180, 256], [0, 180, 0, 256])
        cv2.normalize(self.paper_hist, self.paper_hist, 0, 255, cv2.NORM_MINMAX)

    def get_word_at_point(self, point):
        for i, w in enumerate(self.words):
            x_nw, y_nw, x_se, y_sw = w.box
            x, y = point
            if x > x_nw and x < x_se and y > y_nw and y < y_sw:
                return self.translations[i]

    def get_word_index(self, point):
        for i, w in enumerate(self.words):
            x_nw, y_nw, x_se, y_sw = w.box
            x, y = point
            if x > x_nw and x < x_se and y > y_nw and y < y_sw:
                return i

    def translate(self, word):
        translated_word = self.gs.translate(word, "en", source_language="de")
        return translated_word

    def update_pointed_locations(self, point):
        index = self.get_word_index(point)
        if index != None:
            self.pointed_locations.append(index)

    def get_most_common_word(self):
        index = self.most_common_location()
        if index != None:
            word = self.translations[index].encode("ascii", errors="backslashreplace")
            return word

    def most_common_location(self):
        values = set(self.pointed_locations)
        index = None
        maxi = 0
        for i in values:
            num = self.pointed_locations.count(i)
            if num > maxi:
                index = i
        frequency = float(self.pointed_locations.count(index)) / float(self.pointed_locations.maxlen)
        if frequency > 0.25:
            return index
        else:
            return None