def setup_ecs_inference_service( docker_image_uri, framework, cluster_arn, model_name, worker_instance_id, ei_accelerator_type=None, num_gpus=None, region=DEFAULT_REGION, ): """ Function to setup Inference service on ECS :param docker_image_uri: :param framework: :param cluster_arn: :param model_name: :param worker_instance_id: :param num_gpus: :param region: :return: <tuple> service_name, task_family, revision if all steps passed else Exception Cleans up the resources if any step fails """ datetime_suffix = datetime.datetime.now().strftime("%Y%m%d-%H-%M-%S") processor = "gpu" if "gpu" in docker_image_uri else "eia" if "eia" in docker_image_uri else "cpu" port_mappings = get_ecs_port_mappings(framework) log_group_name = f"/ecs/{framework}-inference-{processor}" num_cpus = ec2_utils.get_instance_num_cpus(worker_instance_id, region=region) # We assume that about 80% of RAM is free on the instance, since we are not directly querying it to find out # what the memory utilization is. memory = int( ec2_utils.get_instance_memory(worker_instance_id, region=region) * 0.8) cluster_name = get_ecs_cluster_name(cluster_arn, region=region) # Below values here are just for sanity arguments_dict = { "family_name": cluster_name, "image": docker_image_uri, "log_group_name": log_group_name, "log_stream_prefix": datetime_suffix, "port_mappings": port_mappings, "num_cpu": num_cpus, "memory": memory, "region": region } if processor == "gpu" and num_gpus: arguments_dict["num_gpu"] = num_gpus if framework == "tensorflow": arguments_dict[ "environment"] = get_ecs_tensorflow_environment_variables( processor, model_name) print(f"Added environment variables: {arguments_dict['environment']}") elif framework in ["mxnet", "pytorch"]: arguments_dict["container_command"] = [ get_mms_run_command(model_name, processor) ] if processor == "eia": arguments_dict["health_check"] = { "retries": 2, "command": [ "CMD-SHELL", "LD_LIBRARY_PATH=/opt/ei_health_check/lib /opt/ei_health_check/bin/health_check" ], "timeout": 5, "interval": 30, "startPeriod": 60 } arguments_dict["inference_accelerators"] = { "deviceName": "device_1", "deviceType": ei_accelerator_type } try: task_family, revision = register_ecs_task_definition(**arguments_dict) print(f"Created Task definition - {task_family}:{revision}") service_name = create_ecs_service(cluster_name, f"service-{cluster_name}", f"{task_family}:{revision}", region=region) print( f"Created ECS service - {service_name} with cloudwatch log group - {log_group_name} " f"log stream prefix - {datetime_suffix}/{cluster_name}") if check_running_task_for_ecs_service(cluster_name, service_name, region=region): print("Service status verified as running. Running inference ...") else: raise Exception(f"No task running in the service: {service_name}") return service_name, task_family, revision except Exception as e: raise ECSServiceCreationException( f"Setup Inference Service Exception - {e}")
def ecs_training_test_executor(cluster_name, cluster_arn, training_command, image_uri, instance_id, num_gpus=None): """ Function to run training task on ECS; Cleans up the resources after each execution :param cluster_name: :param cluster_arn: :param datetime_suffix: :param training_command: :param image_uri: :param instance_id: :param num_gpus: :return: """ # Set defaults to satisfy finally case task_arn = None task_family = None revision = None # Define constants for arguments to be sent to task def image_tag = image_uri.split(':')[-1] log_group_name = os.path.join(os.sep, 'ecs', image_tag) datetime_suffix = datetime.datetime.now().strftime('%Y%m%d-%H-%M-%S') num_cpus = ec2_utils.get_instance_num_cpus(instance_id) memory = int(ec2_utils.get_instance_memory(instance_id) * 0.8) arguments_dict = { "family_name": cluster_name, "image": image_uri, "log_group_name": log_group_name, "log_stream_prefix": datetime_suffix, "num_cpu": num_cpus, "memory": memory, "entrypoint": ["sh", "-c"], "container_command": training_command } if "gpu" in image_tag and num_gpus: arguments_dict["num_gpu"] = str(num_gpus) try: task_family, revision = register_ecs_task_definition(**arguments_dict) print(f"Created Task definition - {task_family}:{revision}") task_arn = create_ecs_task(cluster_name, f"{task_family}:{revision}") print( f"Created ECS task - {task_arn} with cloudwatch log group - {log_group_name} log stream prefix - " f"{os.path.join(datetime_suffix, cluster_name)}") print("Waiting for task to stop ...") if ecs_task_waiter(cluster_name, [task_arn], "tasks_stopped"): ret_codes = describe_ecs_task_exit_status(cluster_name, task_arn) if ret_codes: # Assemble error message if we have nonzero return codes error_msg = "Failures:\n" for code in ret_codes: add_on = "------------------\n" for key, value in code.items(): add_on += f"{key}: {value}\n" error_msg += add_on raise ECSTrainingTestFailure(error_msg) # Return gracefully if task stops return # Raise error if the task does not stop raise ECSTaskNotStoppedError(f"Task not stopped {task_arn}") finally: tear_down_ecs_training_task(cluster_arn, task_arn, task_family, revision)